[luoguP3317] [SDOI2014]重建(矩阵树定理)
为了搞这个题又是学行列式,又是学基尔霍夫矩阵。
无耻地直接发链接,反正我也是抄的题解。。
#include <cstdio>
#include <cmath>
#include <iostream> using namespace std; int n;
double a[101][101];
double ans = 1, tmp = 1, eps = 1e-9; inline void gs()
{
int i, j, k;
double div;
for(j = 1; j < n; j++)
{
k = j;
for(i = j + 1; i < n; i++)
if(fabs(a[i][j]) > fabs(a[k][j])) k = i;
if(j != k) swap(a[j], a[k]);
if(fabs(a[j][j]) < eps)
{
ans = 0;
return;
}
for(i = j + 1; i < n; i++)
{
div = a[i][j] / a[j][j];
for(k = j; k < n; k++)
a[i][k] -= a[j][k] * div;
}
}
for(i = 1; i < n; i++) ans *= a[i][i];
ans = fabs(ans);
} int main()
{
int i, j;
scanf("%d", &n);
for(i = 1; i <= n; i++)
for(j = 1; j <= n; j++)
{
scanf("%lf", &a[i][j]);
if(fabs(a[i][j]) < eps) a[i][j] = eps;
if(fabs(1 - a[i][j]) < eps) a[i][j] = 1 - eps;
if(i < j) tmp *= 1.0 - a[i][j];
a[i][j] /= 1.0 - a[i][j];
}
for(i = 1; i <= n; i++)
{
a[i][i] = 0;
for(j = 1; j <= n; j++)
if(i != j)
{
a[i][i] += a[i][j];
a[i][j] = -a[i][j];
}
}
gs();
printf("%.5lf\n", ans * tmp);
return 0;
}
[luoguP3317] [SDOI2014]重建(矩阵树定理)的更多相关文章
- BZOJ3534:[SDOI2014]重建(矩阵树定理)
Description T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 幸运 ...
- [SDOI2014] 重建 - 矩阵树定理,概率期望
#include <bits/stdc++.h> #define eps 1e-6 using namespace std; const int N = 55; namespace mat ...
- luoguP3317 [SDOI2014]重建 变元矩阵树定理 + 概率
首先,我们需要求的是 $$\sum\limits_{Tree} \prod\limits_{E \in Tree} E(u, v) \prod\limits_{E \notin Tree} (1 - ...
- BZOJ3534 [Sdoi2014]重建 【矩阵树定理】
题目 T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 辛运的是,此前T国政府 ...
- 【BZOJ3534】[SDOI2014] 重建(矩阵树定理)
点此看题面 大致题意: 给你一张图,每条边有一定存在概率.求存在的图刚好为一棵树的概率. 矩阵树定理是什么 如果您不会矩阵树定理,可以看看蒟蒻的这篇博客:初学矩阵树定理. 矩阵树定理的应用 此题中,直 ...
- 【BZOJ3534】重建(矩阵树定理)
[BZOJ3534]重建(矩阵树定理) 题面 BZOJ 洛谷 题解 这.... 矩阵树定理神仙用法???? #include<iostream> #include<cmath> ...
- 【Luogu】P3317重建(高斯消元+矩阵树定理)
题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #inclu ...
- 【算法】Matrix - Tree 矩阵树定理 & 题目总结
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\( ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
随机推荐
- sql server Cannot resolve the collation conflict between "Chinese_PRC_BIN" and "Chinese_PRC_CI_AS" in the equal to operation
今天查询二个db,出现这个错误,二种方法,一种是把db里的collation改成一样的:如果不方便可以直接在sql语句后面转一下: select * from table where crm_mscr ...
- 为什么字符串String是不可变字符串&&"".equals(str)与str.equals("")的区别
为什么字符串String是不可变字符串 实际上String类的实现是char类型的数组 虽然说源码中设置的是private final char[] value; final关键词表示不可变动 但是只 ...
- 数学题 HDOJ——2086 简单归纳
哎 真的是懒得动脑子还是怎么滴... 题目如下 Problem Description 有如下方程:Ai = (Ai-1 + Ai+1)/2 - Ci (i = 1, 2, 3, .... n).若给 ...
- AEE加密解密
from Crypto.Cipher import AESfrom binascii import b2a_hex, a2b_hex class AesHandler(object): def ...
- CPP-基础:C++中为什么需要一个头文件,一个cpp文件
把文件分成头文件和源文件完全是为了方便扩展和组织程序 这么说吧 我们可能会自定义很多函数 而这些函数分别会在不同的地方被调用 甚至有些时候我们需要把一堆函数打包起来一起调用 比如#include &q ...
- Jascript原型链以及Object和Function之间的关系
先看一个简单的function变量 function fun1(name) { this.name = name; } console.log("fun1", fun1) 从结果可 ...
- C04 模块化开发
目录 模块化开发概述 函数概述 如何使用函数 字符串处理函数 模块化开发特点 模块化开发概述 概述 C语言是面向过程的语言,意味着编写C语言程序的时候,我们要像计算机一样思考如何设计程序. 模块化开发 ...
- 还有这种书,程序开发心理学(豆瓣) - 豆瓣读书,转载自:https://book.douban.com/subject/1141154/
登录/注册 下载豆瓣客户端 豆瓣 读书 电影 音乐 同城 小组 阅读 FM 时间 豆品 更多 豆瓣读书 购书单 电子图书 豆瓣书店 2018年度榜单 2018书影音报告 购物车 程序开发心理学 作 ...
- 解析IPV4报文 和IPV6 报文的 checksum
解析IPV4报文和IPV6报文的checksum的算法: 校验和(checksum)算法,简单的说就是16位累加的反码运算: 计算函数如下: 我们在计算时是主机字节序,计算的结果封装成IP包时是网络字 ...
- windows下pycharm使用Anaconda安装包环境
转自: https://www.cnblogs.com/heitaoq/p/8632315.html