【Luogu】P2522Problemb(莫比乌斯反演)
同Zip—Queries,但是用到容斥原理
设f(n,m)是(x,y)的对数,其中1<=x<=n,1<=y<=m
则有f(n,m)-f(a-1,n)-f(b-1,m)+f(a-1,b-1)就是(x,y)的对数,其中a<=x<=n,b<=y<=m
然后就不多说啦
放代码
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cctype> using namespace std; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long miu[];
long long prime[],tot;
bool f[]; inline long long calc(long long n,long long m){
long long x=,top=min(n,m),ans=;
while(x<=top){
long long y=min(n/(n/x),m/(m/x));
ans+=(miu[y]-miu[x-])*(n/x)*(m/x);
x=y+;
}
return ans;
} int main(){
miu[]=;
for(int i=;i<=;++i){
if(!f[i]){
prime[++tot]=i;
miu[i]=-;
}
for(int j=;j<=tot&&(long long)i*prime[j]<=;++j){
f[(long long)i*prime[j]]=;
if(i%prime[j]) miu[(long long)i*prime[j]]=-miu[i];
else break;
}
}
for(int i=;i<=;++i) miu[i]+=miu[i-];
int T=read();
while(T--){
long long a=read(),b=read(),c=read(),d=read(),e=read();
printf("%lld\n",calc(b/e,d/e)-calc((a-)/e,d/e)-calc((c-)/e,b/e)+calc((a-)/e,(c-)/e));
}
return ;
}
【Luogu】P2522Problemb(莫比乌斯反演)的更多相关文章
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...
- [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- 【Luogu】P2303Longge的问题(莫比乌斯反演)
就让我这样的蒟蒻发一个简单易想的题解吧!!! 这题我一开始一看,woc这不是莫比乌斯反演么,推推推,推到杜教筛,输出结果一看不对 emmm回来仔细想想……woc推错了? 然后撕烤半天打了个暴力,A了 ...
- 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)
题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...
随机推荐
- ExpandableListView 安卓二级菜单
ExpandableListView可以显示一个视图垂直滚动显示两级列表中的条目,这不同于列表视图(ListView).ExpandableListView允许有两个层次:一级列表中有二级列表.比如在 ...
- github上ReadMe语法
大标题 =================================== 大标题一般显示工程名,类似html的\<h1\><br /> 你只要在标题下面跟上=====即可 ...
- uvm.sv——UVM之道
文件: $UVM_HOME/src/uvm.sv 类: 无 `include "uvm_pkg.sv" Thus spake the UVM master programm ...
- rsyslog+analyzer
环境:最小化centos6.2 准备:rsyslog-4.6.1.tar.gz loganalyzer-3.6.3.tar.gz wget http://download.adiscon.com/l ...
- iphone之打开pdf、doc、xls文件用UIWebView
//文件名字及类型 NSString *path=[[NSBundle mainBundle]pathForResource:@"xls1" ofType:@"xls&q ...
- 这么大一座Azure“图书馆”,你竟没有发现…
为避免被叫做「伸手党」,很多技术人员早已养成遇到问题上网搜的好习惯. 然而…… 同一个概念,搜到两个相互矛盾的解释,以谁的为准? 想查找某个 API 的用法,搜索结果数十万条,怎样筛选出最有价值的? ...
- 安卓统一推送联盟融云成唯一IM云服务企业
10月16日,安卓统一推送联盟在北京正式成立,来自中国信息通信研究院,华为.小米.OPPO等手机厂商,BAT等互联网巨头公司等75家机构及企业代表参加了联盟成立大会,融云也受邀参会并成为首批成员单位中 ...
- python之文件读写操作(r/r+/rb/w/w+/wb/a/a+/ab)的作用
'r':只读.该文件必须已存在. 'r+':可读可写.该文件必须已存在,写为追加在文件内容末尾. 'rb':表示以二进制方式读取文件.该文件必须已存在. 'w':只写.打开即默认创建一个新文件,如果文 ...
- Delphi 中内存映射对于大文件的使用
这篇文章主要介绍了Delphi 中内存映射对于大文件的使用的相关资料,希望通过本文能帮助到大家,需要的朋友可以参考下 Delphi 中内存映射对于大文件的使用 平时很少使用大文件的内存映射,碰巧遇到了 ...
- POI把html写入word doc文件
直接把Html文本写入到Word文件 获取查看页面的body内容和引用的css文件路径传入到后台. 把对应css文件的内容读取出来. 利用body内容和css文件的内容组成一个标准格式的Html文本. ...