【Luogu】P2522Problemb(莫比乌斯反演)
同Zip—Queries,但是用到容斥原理
设f(n,m)是(x,y)的对数,其中1<=x<=n,1<=y<=m
则有f(n,m)-f(a-1,n)-f(b-1,m)+f(a-1,b-1)就是(x,y)的对数,其中a<=x<=n,b<=y<=m
然后就不多说啦
放代码
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cctype> using namespace std; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long miu[];
long long prime[],tot;
bool f[]; inline long long calc(long long n,long long m){
long long x=,top=min(n,m),ans=;
while(x<=top){
long long y=min(n/(n/x),m/(m/x));
ans+=(miu[y]-miu[x-])*(n/x)*(m/x);
x=y+;
}
return ans;
} int main(){
miu[]=;
for(int i=;i<=;++i){
if(!f[i]){
prime[++tot]=i;
miu[i]=-;
}
for(int j=;j<=tot&&(long long)i*prime[j]<=;++j){
f[(long long)i*prime[j]]=;
if(i%prime[j]) miu[(long long)i*prime[j]]=-miu[i];
else break;
}
}
for(int i=;i<=;++i) miu[i]+=miu[i-];
int T=read();
while(T--){
long long a=read(),b=read(),c=read(),d=read(),e=read();
printf("%lld\n",calc(b/e,d/e)-calc((a-)/e,d/e)-calc((c-)/e,b/e)+calc((a-)/e,(c-)/e));
}
return ;
}
【Luogu】P2522Problemb(莫比乌斯反演)的更多相关文章
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...
- [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- 【Luogu】P2303Longge的问题(莫比乌斯反演)
就让我这样的蒟蒻发一个简单易想的题解吧!!! 这题我一开始一看,woc这不是莫比乌斯反演么,推推推,推到杜教筛,输出结果一看不对 emmm回来仔细想想……woc推错了? 然后撕烤半天打了个暴力,A了 ...
- 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)
题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...
随机推荐
- SQL server 数据库基础语句
上篇介绍的是鼠标操作 遗漏两个知识: 主外键 两个列 数据类型 必须一致 //int类型不能约束nvarchar 类型 varchar类型不能约束nvarchar类型 varchar( ...
- C语言中的二级指针(双指针)
原创作品,转载请标明出处http://blog.csdn.net/yming0221/article/details/7220688 C语言更多查看 C语言使用注意事项(一) C语言使用注意事项(二) ...
- 遍历PspCidTable枚举进程
//测试环境:win7 32位 1 // DriverEntry.cpp #include "ntddk.h" #include <ntddvol.h> #includ ...
- SublimeREPL配置Python3开发
首先什么是REPL? A Read-Eval-Print-Loop (REPL) is available both as a standalone program and easily includ ...
- Web中打印的各种方案参考
http://blog.csdn.net/chinahuyong/article/details/42527491
- 使用CSS来制作类似「黑幕」的效果
网上几乎没有看到这类的代码,留个档 .heimu,.heimu a{ background-color: #252525; color:#252525; text-shadow: none; }::s ...
- 基于Vue+VueRouter+ModJS+Fis3快速搭建H5项目总结
技术选型 • 框架 - Vue+VueRouter • 相比较于react/angular/avalon ? • 简单轻量,社区配套完整• 模块化 - ModJS • 相比较于require/seaj ...
- C\C++对于字符串输入处理
1.scanf scanf以%s格式符读入字符串,会以空格为结束,也就是无法将空格读入.如果换成%c就可以读入,但是无法一次性读入一整行字符. 2.fgets 显然,fgets是一个读取带空格字符串的 ...
- 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告
目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...
- 【贪心 思维题】[USACO13MAR]扑克牌型Poker Hands
看似区间数据结构的一道题 题目描述 Bessie and her friends are playing a unique version of poker involving a deck with ...