题目描述

雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的)。在他的照顾下,小猫很快恢复了健康,并且愈发的活泼可爱了。

可是有一天,雷涛下课回到寝室,却发现小猫不见了!经过一番寻找,才发现她正趴在阳台上对窗外的柿子树发呆…

在北京大学的校园里,有许多柿子树,在雷涛所在的宿舍楼前,就有N棵。并且这N棵柿子树每棵的高度都是H。冬天的寒冷渐渐笼罩了大地,树上的叶子渐渐掉光了,只剩下一个个黄澄澄的柿子,看着非常喜人。而雷涛的小猫恰好非常的爱吃柿子,看着窗外树上的柿子,她十分眼馋,于是决定利用自己敏捷的跳跃能力跳到树上去吃柿子。

小猫可以从宿舍的阳台上跳到窗外任意一棵柿子树的树顶。之后,她每次都可以在当前位置沿着当前所在的柿子树向下跳1单位距离。当然,小猫的能力远不止如此,她还可以在树之间跳跃。每次她都可以从当前这棵树跳到另外的任意一棵,在这个过程中,她的高度会下降Delta单位距离。每个时刻,只要她所在的位置有柿子,她就可以吃掉。整个“吃柿子行动”一直到小猫落到地面上为止。

雷涛调查了所有柿子树上柿子的生长情况。他很想知道,小猫从阳台出发,最多能吃到多少柿子?他知道写一个程序可以很容易的解决这个问题,但是他现在懒于写任何代码。于是,现在你的任务就是帮助雷涛写一个这样的程序。

图为N=3,H=10,Delta=2的一个例子。小猫按照图示路线进行跳跃,可以吃到最多的8个柿子

输入输出格式

输入格式:

第一行有三个以空格分隔的整数,分别代表N,H,Delta

接下来的N行,每行第一个整数为Ni,代表第i棵树上的柿子数量。

接下来是Ni个整数,每个整数Tij代表第i棵柿子树的Tij高度上长有一个柿子。

输出格式:

一个整数,即小猫最多吃到的柿子数。

输入输出样例

输入样例#1:

3 10 2
3 1 4 10
6 3 5 9 7 8 9
5 4 5 3 6 9
输出样例#1:

8

说明

1≤N,H≤2000

0≤Ni≤50000

1≤Delta≤N,1≤Tij≤H

输入文件大小不大于40960KB

来源 Excalibur, 2008

Solution:

  本题贪心优化dp(话说今天分班考试,炸穿了,作文没写完~物理啥公式都不会~凉凉)。

  很容易想到本题dp思路,既然和$N,H$有关,那么状态就这俩东西咯,定义$f[i][j]$表示在第$j$棵树的$i$高度能得到的最多果子数,由于每次跳就两种情况,状态转移方程就呼之欲出了:$f[i][j]=max(f[i-1][j],f[i-Delta][k]),k!=j$。

  但是一个问题是这样的dp是$O(N^2H)$的转移,显然爆掉。

  发现转移时$f[i-Delta][k]$的最大值是可以确定的,贪心的想到,选的话肯定是从$i-Delta$高度下最多的那棵树转移过来,于是维护$g[i]$表示$i$高度下最多的果子数,每次转移完时维护一下$g$。注意$k!=j$,每次转移先使$f[i][j]=f[i-1][j]$,就不用担心从同一棵树的$i-Delta$转移过来的情况了。

  目标状态$g[H]$,时间复杂度$O(NH)$,稳妥>._.<。

代码:

/*Code by 520 -- 8.29*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,h,d,a[N][N],f[N][N],g[N],x; int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} int main(){
n=gi(),h=gi(),d=gi();
For(i,,n) {
x=gi();
For(j,,x) a[i][gi()]++;
}
For(i,,h){
For(j,,n) f[i][j]=f[i-][j]+a[j][i];
if(i>d) For(j,,n) f[i][j]=max(f[i][j],g[i-d]+a[j][i]);
For(j,,n) g[i]=max(f[i][j],g[i]);
}
cout<<g[h];
return ;
}

P1107 [BJWC2008]雷涛的小猫的更多相关文章

  1. 洛谷P1107[BJWC2008]雷涛的小猫题解

    题目 这个题可以说是一个很基础偏中等的\(DP\)了,很像\(NOIpD1T2\)的难度,所以这个题是很好想的. 简化题意 可以先简化一下题意,这个题由于从上面向下调和从下向上爬都是一样的,所以我们就 ...

  2. 洛谷P1107 [BJWC2008]雷涛的小猫 题解

    题面 以下是luogu给的标签 但字符串是什么鬼.... 玄学... 哦吼~ #include<cstdio> #include<iostream> using namespa ...

  3. 【洛谷P1107】 [BJWC2008]雷涛的小猫

    雷涛的小猫 题目链接 n^2DP比较好想, f[i][j]表示第i棵树高度为j的最大收益 直接从上到下转移即可,每次记录下max f[1~n][j] 用于下面的转移 f[i][j]=max(f[i][ ...

  4. BZOJ1270[BJWC2008]雷涛的小猫

    雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的).在他的照顾下,小猫很快恢复了健康,并且愈发的活泼可爱了. 可是有一天,雷涛下课回到寝室,却 ...

  5. [BJWC2008]雷涛的小猫 dp

    题目背景 原最大整数参见P1012 题目描述 雷涛同学非常的有爱心,在他的宿舍里,养着一只因为受伤被救助的小猫(当然,这样的行为是违反学生宿舍管理条例的).在他的照顾下,小猫很快恢复了健康,并且愈发的 ...

  6. 洛谷P1107 & BZOJ1270 [BJWC2008]雷涛的小猫

    一道DP. 给你一个矩阵里面有很多数,你需要从上往下找到一种跳跃方法使得经过的点的价值之和最大. 具体题面见链接 洛谷P1107 BZOJ1270 很明显是一个二维的DP. #include<b ...

  7. BZOJ1270或洛谷1107 [BJWC2008]雷涛的小猫

    BZOJ原题链接 洛谷原题链接 \(DP\)水题. 定义\(f[i][j]\)表示小猫在高度\(i\),位于第\(j\)棵树时最多能吃到的柿子的数量.分为直接往下跳和跳到另一棵树两个决策. 那么很容易 ...

  8. [BJWC2008]雷涛的小猫

    嘟嘟嘟 dp. 刚开始我想的是dp[i][j]表示在第 i 棵树上,高度为h能吃到的最多的果子,如此能得到转移方程: dp[i][j] = max(dp[i][j + 1], dp[k][j + de ...

  9. BZOJ_1270_雷涛的小猫_(动态规划)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1270 有n棵树,高度为h.一只猫从任意一棵树的树顶开始,每次在同一棵树上下降1,或者跳到其他树 ...

随机推荐

  1. Docker入门篇(二)之docker的单主机网络

    Docker 安装时会自动在host上创建三个网络,我们可用 docker network ls命令查看: [root@localhost ~]# docker network ls NETWORK ...

  2. Yii 2.0 Gridview源码分析

    GridView yii\grid\GridView 作用:GridView是Yii中的一个Widget,用来展示数据表格.有排序,分页和过滤功能. GridView默认界面如下.这是用Gii生成的. ...

  3. angular之$watch() $watchGroup()和$watchCollection()

    $watch $watch主要是用来监听一个对象,在对象发生变化时触发某个事件. 用法: $scope.$watch(watchFn,watchAction, deepWatch) 接下来讲一下这几个 ...

  4. 【JUC源码解析】ThreadPoolExecutor

    简介 ThreadPoolExecutor,线程池的基石. 概述 线程池,除了用HashSet承载一组线程做任务以外,还用BlockingQueue承载一组任务.corePoolSize和maximu ...

  5. Mac 必备工具之 brew

    brew 是 Mac 下的一个包管理工具,类似于 centos 下的 yum,可以很方便地进行安装/卸载/更新各种软件包,例如:nodejs, elasticsearch, kibana, mysql ...

  6. DOM练手讲解

    先上代码,大家贴入看一下 <body> <select id="slc" size="7"></select> <in ...

  7. XAF-如何修改内置的编辑器(Property Editor)

    本示例演示在web/win中给 日期选择控制显示出一个时钟及修改时间的控件.效果如下: 如果你装了XAF在这个路径中已经有了这个示例: %PUBLIC%\Documents\DevExpress De ...

  8. Zabbix部署-LNMP环境

    原文发表于cu:2016-05-05 参考文档: LNMP安装:http://www.osyunwei.com/archives/7891.html 一.环境 Server:CentOS-7-x86_ ...

  9. Linux内核学习笔记(1)-- 进程管理概述

    一.进程与线程 进程是处于执行期的程序,但是并不仅仅局限于一段可执行程序代码.通常,进程还要包含其他资源,像打开的文件,挂起的信号,内核内部数据,处理器状态,一个或多个具有内存映射的内存地址空间及一个 ...

  10. Hackerank-Array-NewYearChaos

    题目背景描述 新年第一天,N 个人排队坐过山车.每个人穿有带编号的衣服 \([1, 2, 3, ...]\). 因为排队时间太久,有人发现给前面相邻的人喂一颗糖,就可以和他交换位置,而每人手里只有两颗 ...