考虑固定左端点,求出该情况下能获得的最大值。于是每次可以在某数第一次出现的位置加上其价值,第二次出现的位置减掉其价值,查询前缀最大值就可以了。每次移动左端点在线段树上更新即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1000010
#define ll long long
int n,m,a[N],b[N],p[N],nxt[N];
int L[N<<],R[N<<];
ll mx[N<<],sum[N<<],ans;
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r) return;
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
}
void up(int k)
{
sum[k]=sum[k<<]+sum[k<<|];
mx[k]=max(mx[k<<],sum[k<<]+mx[k<<|]);
}
void modify(int k,int p,int x)
{
if (L[k]==R[k]) {mx[k]=sum[k]=x;return;}
int mid=L[k]+R[k]>>;
if (p<=mid) modify(k<<,p,x);
else modify(k<<|,p,x);
up(k);
}
ll query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return mx[k];
int mid=L[k]+R[k]>>;
if (r<=mid) return query(k<<,l,r);
else if (l>mid) return query(k<<|,l,r);
else return max(query(k<<,l,mid),sum[k<<]+query(k<<|,mid+,r));
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3747.in","r",stdin);
freopen("bzoj3747.out","w",stdout);
const char LL[]="I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++)
{
a[i]=read();
nxt[p[a[i]]]=i,p[a[i]]=i;
}
for (int i=;i<=n;i++) if (!nxt[i]) nxt[i]=n+;nxt[n+]=n+;
for (int i=;i<=m;i++) b[i]=read();
build(,,n+);
memset(p,,sizeof(p));
for (int i=;i<=n;i++)
if (!p[a[i]]) p[a[i]]=,modify(,i,b[a[i]]),modify(,nxt[i],-b[a[i]]);
for (int i=;i<=n;i++)
{
ans=max(ans,query(,i,n));
modify(,i,),modify(,nxt[i],b[a[i]]),modify(,nxt[nxt[i]],-b[a[i]]);
}
cout<<ans;
return ;
}

BZOJ3747 POI2015Kinoman(线段树)的更多相关文章

  1. BZOJ3747 POI2015 Kinoman 【线段树】*

    BZOJ3747 POI2015 Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[ ...

  2. 【bzoj3747】Kinoman[POI2015](线段树)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3747 对于这种题,考虑固定区间的右端点为r,设区间左端点为l能取得的好看值总和为a[l] ...

  3. 【BZOJ3747】[POI2015]Kinoman 线段树

    [BZOJ3747][POI2015]Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第 ...

  4. [bzoj3747][POI2015]Kinoman_线段树

    Kinoman bzoj-3747 POI-2015 题目大意:有m部电影,第i部电影的好看值为w[i].现在放了n天电影,请你选择一段区间l~r使得l到r之间的好看值总和最大.特别地,如果同一种电影 ...

  5. 2018.08.15 bzoj3747: [POI2015]Kinoman(线段树)

    传送门 简单题. 先不管时间复杂度看看怎么做. 对于一段区间[l,r],如果从右端加入一个数a[r+1],对这个区间有什么影响?显然如果区间中已经有了a[r+1]这个数就会产生-a[i+1]的影响,否 ...

  6. 【bzoj3747】[POI2015]Kinoman 线段树区间合并

    题目描述 一个长度为n的序列,每个数为1~m之一.求一段连续子序列,使得其中之出现过一次的数对应的价值之和最大. 输入 第一行两个整数n,m(1<=m<=n<=1000000). 第 ...

  7. 【bzoj3747】[POI2015]Kinoman - 线段树(经典)

    Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...

  8. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  9. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  10. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

随机推荐

  1. [2016北京集训测试赛3]masodik-[凸包]

    Description Soluton 666这道题竟然用凸包... 维护r和c的下凸壳.哪个斜率大走哪个. 证明:我们先不考虑其他的,只考虑两条路,如下图: 设图的长度为x,宽度为y.如果我们要走上 ...

  2. 【HNOI2014】世界树

    题面 题解 虚树好题(只是细节太多) 构出虚树后,一定要仔细梳理关键点之间的点是上面属于父亲,下面属于儿子. 然后二分出所有的点的所属就可以了 代码 #include<cstdio> #i ...

  3. SimpleDateFormat,Calendar 线程非安全的问题

    SimpleDateFormat是Java中非常常见的一个类,用来解析和格式化日期字符串.但是SimpleDateFormat在多线程的环境并不是安全的,这个是很容易犯错的部分,接下来讲一下这个问题出 ...

  4. T-SQL语句基础

    连接服务器 - 去哪个仓库找目标数据库 - 找仓库中的目标区域查找目标表 - 找货柜找数据(以行为基础单位) - 在货柜上找到目标的物品 基础T-Sql语句1.SQL语句的注释 2.创建数据库crea ...

  5. Maven学习(十一)-----使用Maven创建Web应用程序项目

    使用Maven创建Web应用程序项目 用到的技术/工具: Maven 3.3.3 Eclipse 4.3 JDK 8 Spring 4.1.1.RELEASED Tomcat 7 Logback 1. ...

  6. TW实习日记:第十天

    今天任务很简单,就是出品项目的时间轴显示页面和动态路由设置.其实时间轴页面很快就做完了,在做完处理完数据之后,然而有很多细节需要打磨,这就又考验了我面向搜索引擎编程的能力,根据需求百度了很多css的样 ...

  7. Linux内核学习笔记(7)--完全公平调度(CFS)

    一.完全公平调度算法 完全公平调度 CFS 的出发点基于一个简单的理念:进程调度的效果应该如同系统具备一个理想中的完美多任务处理器.在这种系统中,每个进程能够获得 1/n 的处理器时间(n 为可运行进 ...

  8. Node2vec 代码分析

    Node2vec 代码从Github上clone到本地,主要是main.py和node2vec.py两个文件. 下面把我的读代码注释放到上面来, import numpy as np import n ...

  9. python项目通过配置文件方式配置日志-logging

    背景:项目中引入日志是必须的,这里介绍通过配置文件config.ini的方式配置日志 1.新建config.ini 2.添加配置 [loggers]keys=root,ProxyIP [handler ...

  10. 线段树---no end

    额,还有 :区间操作,交,并,补等 区间合并 扫描线 这些问题有空再研究吧.... 先看j2ee了..... 传送门 版权声明:本文为博主原创文章,未经博主允许不得转载.