题意:有两个长度为n的排列p和s。要求通过交换使得p变成s。交换 pi 和 pj 的代价是|i-j|。要求使用最少的代价让p变成s。

考虑两个数字pi和pj,假如交换他们能使得pi到目标的距离减少,pj到目标的距离减少。那么应该交换他们,这是一个必要的操作,也是答案的下界。

如果每一次都能找到这样的两个数字,那么答案就是排列p中的每个数字在排列s的位置的距离差之和/2.这显然是答案的下界。

现在考虑证明这个下界是可以构造出来的。

考虑排列p中最后一个位置不对的数字,不妨设为pj,他的目标位置是pi,那么如果p[i+1,j]中有任意一个数的目标是pk(k<i),那么可以进行必要交换。

假设没有这样的一个数字使得他的目标是pk,一共有(j-i-1)个数,(j-i-2)个空,根据鸽巢原理,显然不存在这样的情况。

也就是说,对于排列p中最后一个位置不对的数字pj,目标位置是pi,pi总能在p[i+1,j]中找到一个数字pk,使得它们交换之后到目标的距离都减小了。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... int a[N]; int main ()
{
int n, x;
LL ans=;
scanf("%d",&n);
FOR(i,,n) scanf("%d",&x), a[x]=i;
FOR(i,,n) scanf("%d",&x), ans+=abs(a[x]-i);
printf("%lld\n",ans/);
return ;
}

51nod 1574 排列转换(贪心+鸽巢原理)的更多相关文章

  1. 51nod 1574 排列转换(猜结论)

    分析 猜了一下结论,居然对了..........具体操作是:假设排列s是1,2,3,...,nk为排列p中最大的 没有放到正确位置的数,k的位置为posk的右边一定有一个数x<=pos(因为&l ...

  2. 51nod 1103 N的倍数 (鸽巢原理)

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得这 ...

  3. 51nod 1103【鸽巢原理】

    思路: 这道题嘛有些弯还是要转的,比如你说让你搞n的倍数,你别老老实实照她的意思去啊,倍数可以除法,取膜 . 因为n个数我们可以求前缀和然后取膜,对n取膜的话有0-n-1种情况,所以方案一定是有的,说 ...

  4. [HDU1205]吃糖果 题解(鸽巢原理)

    [HDU1205]吃糖果 Description -HOHO,终于从Speakless手上赢走了所有的糖果,是Gardon吃糖果时有个特殊的癖好,就是不喜欢将一样的糖果放在一起吃,喜欢先吃一种,下一次 ...

  5. 鸽巢原理及其扩展——Ramsey定理

    第一部分:鸽巢原理 咕咕咕!!! 然鹅大家还是最熟悉我→ a数组:but 我也很重要 $:我好像也出现不少次 以上纯属灌水 文章简叙:鸽巢原理对初赛时的问题求解以及复赛的数论题目都有启发意义.直接的初 ...

  6. hdu 3183 rmq+鸽巢原理

    题目大意: 给你一个数字字符串序列,给你要求删掉的数字个数m,删掉m个数使的剩下的数字字符串的之最小.并输出这个数字: 基本思路; 这题解法有很多,贪心,rmq都可以,这里选择rmq,因为很久没有写r ...

  7. HDU 1205 吃糖果 (鸽巢原理)

    题目链接:HDU 1205 Problem Description HOHO,终于从Speakless手上赢走了所有的糖果,是Gardon吃糖果时有个特殊的癖好,就是不喜欢将一样的糖果放在一起吃,喜欢 ...

  8. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  9. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

随机推荐

  1. 20155320 2016-2017-2《Java程序设计》第十周学习总结

    20155320 2016-2017-2<Java程序设计>第十周学习总结 教材学习内容总结 本周学习目标 了解计算机网络基础 掌握Java Socket编程 理解混合密码系统 掌握Jav ...

  2. 数据结构思维导图 Part1

    刚刚结束数据结构的学习,在复习阶段,所以做来思维导图总结一下. 思维导图,顾名思义是应该有对思维有引导作用的,就像思维的整理术,然而想要学好什么,光看思维导图总是不够的. 树与图作为两个复杂非线性结构 ...

  3. dp合集 广场铺砖问题&&硬木地板

    dp合集 广场铺砖问题&&硬木地板 很经典了吧... 前排:思想来自yali朱全民dalao的ppt百度文库免费下载 后排:STO朱全民OTZ 广场铺砖问题 有一个 W 行 H 列的广 ...

  4. 搞懂.NET Framework 历史版本(2017年)

    最近被.NET平台各种名词.以及各种版本弄得有些疑惑,开发和部署,对于开发平台版本选择是个基本问题,因此,花了些时间,学习汇总了有关.NET版本演进的历史. .NET简介 这个平台相信我们都知道,不过 ...

  5. youtube高清视频下载方法

    youtube下载方法有多种, 但都不支持1080P以上的高清下载, 今天找到一种支持1080P的, 记录一下 步骤1: 百度搜: Dooseen tubedown 下载该软件, 并安装, 一直下一步 ...

  6. 我想这次我真的理解了 JavaScript 的单线程机制

    今天面试的时候被问到一个问题,是关于 JS 异步的.当时我脑海中闪过了一个单线程的概念,但却没有把真正的原理阐述清楚.所以回来特意重新回顾了前面单线程和异步相关的一些知识点. 虽然之前学习的时候也接触 ...

  7. 高可用Kubernetes集群-1. 集群环境

    参考文档: 部署kubernetes集群1:https://github.com/opsnull/follow-me-install-kubernetes-cluster 部署kubernetes集群 ...

  8. Python数据挖掘——数据预处理

    Python数据挖掘——数据预处理 数据预处理 数据质量 准确性.完整性.一致性.时效性.可信性.可解释性 数据预处理的主要任务 数据清理 数据集成 数据归约 维归约 数值归约 数据变换 规范化 数据 ...

  9. eos开发实践

    一 下载前端代码 git clone https://github.com/baidang201/eos-todo 二 安装nodejs sudo apt-get install python-sof ...

  10. 关于 WebView 知识点的详解

    什么是 WebView WebView 是手机中内置了一款高性能 webkit 内核浏览器,在 SDK 中封装的一个组件.没有提供地址栏和导航栏, WebView 只是单纯的展示一个网页界面.在开发中 ...