Description

将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个),

这样分割了(n-1)次后,原矩阵被分割成了n个矩阵。(每次分割都只能沿着数字间的缝隙进行)

原矩阵中每一位置上有一个分值,一个矩阵的总分为其所含各位置上分值之和。

现在需要把矩阵按上述规则分割成n个矩阵,并使各矩阵总分的均方差最小。请编程对给出的矩阵及n,求出均方差的最小值。

Input

第一行为3个整数,表示a,b,n(1<a,b<=10,1<n<=10)的值。
第二行至第n+1行每行为b个小于100的非负整数,表示矩阵中相应位置上的分值。每行相邻两数之间用一个空格分开。

Output

仅一个数,为均方差的最小值(四舍五入精确到小数点后2位)

Sample Input

5 4 4
2 3 4 6
5 7 5 1
10 4 0 5
2 0 2 3
4 1 1 1

Sample Output

0.50

Solution

平均值一开始可以直接算,然后直接记忆化搜索就好了。
$f[a][b][c][d][k]$表示左上角为$(a,b)$,右下角为$(c,d)$的矩形被划分了$k$次后的最小答案。

Code

  1. #include<iostream>
  2. #include<cstring>
  3. #include<cstdio>
  4. #include<cmath>
  5. #define N (12)
  6. using namespace std;
  7.  
  8. double ave,f[N][N][N][N][N];
  9. int n,m,p,x,sum[N][N];
  10.  
  11. double Dfs(int a,int b,int c,int d,int k)
  12. {
  13. double &x=f[a][b][c][d][k];
  14. if (x>=) return x;
  15. if (k==)
  16. {
  17. x=sum[c][d]-sum[c][b-]-sum[a-][d]+sum[a-][b-];
  18. return x=(x-ave)*(x-ave);
  19. }
  20. x=1e18;
  21. for (int i=a+; i<=c; ++i)
  22. for (int j=; j<k; ++j)
  23. x=min(x,Dfs(a,b,i-,d,j)+Dfs(i,b,c,d,k-j-));
  24. for (int i=b+; i<=d; ++i)
  25. for (int j=; j<k; ++j)
  26. x=min(x,Dfs(a,b,c,i-,j)+Dfs(a,i,c,d,k-j-));
  27. return x;
  28. }
  29.  
  30. int main()
  31. {
  32. memset(f,-0x7f,sizeof(f));
  33. cin>>n>>m>>p;
  34. for (int i=; i<=n; ++i)
  35. for (int j=; j<=m; ++j)
  36. {
  37. scanf("%d",&x);
  38. sum[i][j]=sum[i-][j]+sum[i][j-]-sum[i-][j-]+x;
  39. }
  40. ave=sum[n][m]*1.0/p;
  41. Dfs(,,n,m,p-);
  42. printf("%.2lf",sqrt(f[][][n][m][p-]/p));
  43. }

BZOJ1048:[HAOI2007]分割矩阵(记忆化搜索DP)的更多相关文章

  1. 记忆化搜索(DP+DFS) URAL 1183 Brackets Sequence

    题目传送门 /* 记忆化搜索(DP+DFS):dp[i][j] 表示第i到第j个字符,最少要加多少个括号 dp[x][x] = 1 一定要加一个括号:dp[x][y] = 0, x > y; 当 ...

  2. HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)

    Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K ...

  3. HDU 1078 FatMouse and Cheese 记忆化搜索DP

    直接爆搜肯定超时,除非你加了某种凡人不能想出来的剪枝...555 因为老鼠的路径上的点满足是递增的,所以满足一定的拓补关系,可以利用动态规划求解 但是复杂的拓补关系无法简单的用循环实现,所以直接采取记 ...

  4. 记忆化搜索 dp学习~2

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1331 Function Run Fun Time Limit: 2000/1000 MS (Java/ ...

  5. bzoj千题计划186:bzoj1048: [HAOI2007]分割矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1048 #include<cmath> #include<cstdio> #i ...

  6. 【10.31校内测试】【组合数学】【记忆化搜索/DP】【多起点多终点二进制拆位Spfa】

    Solution 注意取模!!! Code #include<bits/stdc++.h> #define mod 1000000007 #define LL long long usin ...

  7. hdu1331&&hdu1579记忆化搜索(DP+DFS)

    这两题是一模一样的``` 题意:给了一系列递推关系,但是由于这些递推很复杂,所以递推起来要花费很长的时间,所以我要编程序在有限的时间内输出答案. w(a, b, c): 如果a,b,c中有一个值小于等 ...

  8. hdu 4960 记忆化搜索 DP

    Another OCD Patient Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Ot ...

  9. HNU OJ10086 挤挤更健康 记忆化搜索DP

    挤挤更健康 Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit users: 339, A ...

随机推荐

  1. C# 空合并运算符 ??

    C#语言中,??运算符称为空合并运算符: a??b形式的空合并表达式要求a为可以为null的类型或引用类型.如果a为非null,则a??b的结果为a:否则,结果为b.仅当a为null时,该操作才计算b ...

  2. MAVEN的基本配置,以及Hello Word

    MAVEN介绍 Maven是一个项目构建工具,参与项目创建.jar包管理.编译.运行.打包和发布等过程. Maven工具目的是以一种简便方式在多个项目中共享jar包. MAVEN安装和配置 Maven ...

  3. .NET MVC自定义Html辅助方法

    using System;using System.Web.Mvc;using System.Web.Routing; namespace MvcTest2.Helpers{ public stati ...

  4. 二:SpringCloud-Eureka

    五:Eureka服务注册与发现 1. 是什么 Spring Cloud 封装了 Netflix 公司开发的 Eureka 模块来实现==服务注册和发现==(请对比Zookeeper). Eureka ...

  5. 关于JAVA是值传递还是引用传递的问题

    1.概念 值传递:方法调用时,实际传入的是它的副本,在方法中对值的修改,不影响调用者的值. 引用传递:方法调用时,实际传入的是参数的实际内存地址,调用者和调用方法所操作的参数都指向同一内存地址,所以方 ...

  6. dubbo客户端源码分析(一)

    rpc框架有很多,公司自研.开源的thrift.dubbo.grpc等.我用过几个框架,了解了一下实现原理,客户端基本都是用代理实现,jdk动态代理.cglib等.最近一段时间想了解一下dubbo源码 ...

  7. K:栈相关的算法

    本博文总结了常见的应用栈来进行实现的相关算法 ps:点击相关问题的标题,即可进入相关的博文进行查看其算法的思想及其实现,这篇博文更多的是作为目录使用 大数加法:在java中,整数是有最大上限的.所谓大 ...

  8. axios中的qs

    qs是一个npm仓库所管理的包,可通过npm install qs命令进行安装. 1. qs.parse()将URL解析成对象的形式 const Qs = require('qs'); let url ...

  9. android 在非UI线程更新UI仍然成功原因深入剖析

    ”只能在UI主线程中更新View“. 这句话很熟悉吧? 来来,哥们,看一下下面的例子 @Override       protected void onCreate(Bundle savedInsta ...

  10. unity震动效果

    using System.Collections; using System.Collections.Generic; using UnityEngine; //思想:在短时间内在规定圆内随机震动对象 ...