TOYS
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10666   Accepted: 5128

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 

Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the
toys get mixed up, and it is impossible for John to find his favorite toys. 



John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example
toy box. 

 

For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner
and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that
the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is
random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the
rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
题意:给出一个长方形槽,然后从左到右给出n个隔板,把该长方形槽分成n+1个空间,n个隔板互不交叉,最后给出m个小球,随机给出,保证每个小球不在外部和隔板上;问每个空间有多少个小球?(如果不是按照顺序给出的,按照x排序即可,因为互补交叉)
分析;因为隔板是按照顺序给出的,那么对于每个小球二分隔板,用叉乘判断点在线段的位置,枚举答案即可:
#include"string.h"
#include"stdio.h"
#include"iostream"
#include"algorithm"
#include"queue"
#include"stack"
#define M 5009
#define N 100009
#include"stdlib.h"
#include"math.h"
#define inf 10000000000000000LL
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define eps 1e-10
using namespace std;
struct node
{
double x,y;
node(){}
node(double _x,double _y):x(_x),y(_y){}
node operator +(node p)
{
return node(x+p.x,y+p.y);
}
node operator -(node p)
{
return node(x-p.x,y-p.y);
}
double operator *(node p)
{
return x*p.y-y*p.x;
}
double operator ^(node p)
{
return x*p.x+y*p.y;
}
}p[M],k[M];
int n;
int cmp(node a,node b)
{
return a.x<b.x;
}
double len(node a)
{
return sqrt(a^a);
}
double dis(node a,node b)
{
return len(b-a);
}
double cross(node a,node b,node c)
{
return (b-a)*(c-a);
}
double dot(node a,node b,node c)
{
return (b-a)^(c-a);
}
int fun(node p,node *q)
{
double rad=0;
for(int i=1;i<=4;i++)
{
rad+=acos(dot(p,q[i-1],q[i%4])/dis(p,q[i-1])/dis(p,q[i%4]));
}
if(fabs(rad-PI*2)<eps)
return 1;
else
return 0;
}
int s[M],vis[M];
int main()
{
double x1,x2,y1,y2;
int n,m,i,kk=0;
while(scanf("%d",&n),n)
{
scanf("%d%lf%lf%lf%lf",&m,&x1,&y1,&x2,&y2);
k[n+1]=node(x2,x2);
for(i=1;i<=n;i++)
scanf("%lf%lf",&k[i].x,&k[i].y);
memset(s,0,sizeof(s));
for(i=1;i<=m;i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
int l=1,r=n+1,mid;
int fuck;
while(l<=r)
{
mid=(l+r)/2;
node p1(k[mid].y,y2);
node p2(k[mid].x,y1);
if(cross(p1,p2,p[i])>0)
{
fuck=mid;
r=mid-1;
}
else
{
l=mid+1;
} }
s[fuck-1]++;
}
if(kk)
printf("\n");
kk++;
for(i=0;i<=n;i++)
printf("%d: %d\n",i,s[i]);
}
}

几何+点与线段的位置关系+二分(POJ2318)的更多相关文章

  1. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  2. Segments---poj3304(判断直线与线段的位置关系)

    题目链接:http://poj.org/problem?id=3304 题意:给你n个线段,求是否有一条直线与所有的线段都相交,有Yes,没有No; 枚举所有的顶点作为直线的两点,然后判断这条直线是否 ...

  3. POJ-2318 TOYS 计算几何 判断点在线段的位置

    题目链接:https://cn.vjudge.net/problem/POJ-2318 题意 在一个矩形内,给出n-1条线段,把矩形分成n快四边形 问某些点在那个四边形内 思路 二分+判断点与位置关系 ...

  4. 平面内,线与线 两条线找交点 两条线段的位置关系(相交)判定与交点求解 C#

    个人亲自编写.测试,可以正常使用   道理看原文,这里不多说   网上找到的几篇基本都不能用的   C#代码 bool Equal(float f1, float f2) { return (Math ...

  5. Cupid's Arrow---hdu1756(判断点与多边形的位置关系 模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1756 题意:中文题,套模板即可: /* 射线法:判断一个点是在多边形内部,边上还是在外部,时间复杂度为 ...

  6. LightOj1190 - Sleepwalking(判断点与多边形的位置关系--射线法模板)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1190 题意:给你一个多边形含有n个点:然后又m个查询,每次判断点(x, y)是否在多边 ...

  7. 【bzoj2402】陶陶的难题II 分数规划+树链剖分+线段树+STL-vector+凸包+二分

    题目描述 输入 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi (1<=yi& ...

  8. TOYS(计算几何基础+点与直线的位置关系)

    题目链接:http://poj.org/problem?id=2318 题面: TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submiss ...

  9. 叉积_判断点与三角形的位置关系 P1355 神秘大三角

    题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样例) 所有 ...

随机推荐

  1. 用Jquery获取checkbox多个选项

    1,下拉框: var cc1   = $(".formc select[@name='country'] option[@selected]").text(); //得到下拉菜单的 ...

  2. 【转】MFC 迅雷七窗体特效,使用DWM实现Aero Glass效果

    从Windows Vista开始,Aero Glass效果被应用在了Home Premium以上的系统中(Home Basic不具有该效果).这种效果是由DWM(Desktop Window Mana ...

  3. 【转】MFC CreateFont 用法

    中国人自古就有自右至左.从上到下书写汉字的习惯.而当我们在自己所编写的应用程序中使用输出函数输出的总是自左至右的横排文字.有没有可能在我们的应用程序中实现竖写汉字的效果呢?笔者偶然发现了一种利用VC实 ...

  4. e1084. 捕获错误和异常

    All errors and exceptions extend from Throwable. By catching Throwable, it is possible to handle all ...

  5. 剑指offer_面试题5_从尾到头打印链表(栈和递归实现)

    题目:输入一个链表的头结点,从尾到头反过来打印出每一个节点的值 考察 单链表操作.栈.递归等概念. 理解:要实现单链表的输出,那么就须要遍历.遍历的顺序是从头到尾.而节点输出的顺序是从尾到头.因此,先 ...

  6. SQL 模糊查询LIKE concat用法

    concat用来拼接查询的字符串,如下代码所示 SELECT * FROM deployment WHERE name LIKE concat(concat('%',#{queryMessage}), ...

  7. C++primer中 CacheObj实现(非常有意思)

    //CacheObj.h #ifndef __CacheObj__ #define __CacheObj__ #include <iostream> #include <stdexc ...

  8. 学习 TList 类的实现[6]

    实现 TMyList.Add 函数. TList 中的 Add 函数用到了一个 Grow 方法, 它的原理是元素越多就为以后准备更多内存, 我们这里省略为预留 4 个元素的内存; TList 中的 A ...

  9. Ubuntu 12.04.3 安装 Oracle11gR2

    #step 1:  groupadd  -g 2000 dba useradd   -g 2000 -m -s /bin/bash -u 2000 grid useradd   -g 2000 -m ...

  10. ASP.Net MVC开发基础学习笔记(7):数据查询页面

     前言 前面铺垫了那么多,今天我们就用MVC5 + EF6 + Bootstrap3来正式创建一个基本查询页面. 为什么从查询页面開始?嘿嘿.由于小弟的.Net生涯就是从查询页面開始的,记得正式工 ...