• 30.43%
  • 2000ms
  • 262144K

Feeling hungry, a cute hamster decides to order some take-away food (like fried chicken for only 3030 Yuan).

However, his owner CXY thinks that take-away food is unhealthy and expensive. So she demands her hamster to fulfill a mission before ordering the take-away food. Then she brings the hamster to a wall.

The wall is covered by square ceramic tiles, which can be regarded as a n * mn∗m grid. CXY wants her hamster to calculate the number of rectangles composed of these tiles.

For example, the following 3 * 33∗3 wall contains 3636 rectangles:

Such problem is quite easy for little hamster to solve, and he quickly manages to get the answer.

Seeing this, the evil girl CXY picks up a brush and paint some tiles into black, claiming that only those rectangles which don't contain any black tiles are valid and the poor hamster should only calculate the number of the valid rectangles. Now the hamster feels the problem is too difficult for him to solve, so he decides to turn to your help. Please help this little hamster solve the problem so that he can enjoy his favorite fried chicken.

Input

There are multiple test cases in the input data.

The first line contains a integer TT : number of test cases. T \le 5T≤5.

For each test case, the first line contains 33 integers n , m , kn,m,k , denoting that the wall is a n \times mn×m grid, and the number of the black tiles is kk.

For the next kk lines, each line contains 22 integers: x\ yx y ,denoting a black tile is on the xx-th row and yy-th column. It's guaranteed that all the positions of the black tiles are distinct.

For all the test cases,

1 \le n \le 10^5,1\le m \le 1001≤n≤105,1≤m≤100,

0 \le k \le 10^5 , 1 \le x \le n, 1 \le y \le m0≤k≤105,1≤x≤n,1≤y≤m.

It's guaranteed that at most 22 test cases satisfy that n \ge 20000n≥20000.

Output

For each test case, print "Case #xx: ansans" (without quotes) in a single line, where xx is the test case number and ansans is the answer for this test case.

Hint

The second test case looks as follows:

样例输入复制

2
3 3 0
3 3 1
2 2

样例输出复制

Case #1: 36
Case #2: 20

题目来源

ACM-ICPC 2018 南京赛区网络预赛

感觉这道题和暑假牛客网多校赛有道题很像 求数独子矩阵的 按那个方法敲了

T了 本来先用vector存的 然后排序 觉得这里可能会T 改成了优先队列

但是还是T了 可能有时候logn还是比较大吧 题解的算法是nmm 和 nmlogn比可能还是会小一点

实际上题解的方式和牛客网上这道题的思路是一样的 只不过少了处理相同字母这一部分 要更简单一点

AC代码:

相当于每次从一个矩阵的最右下角开始加一个一列的矩阵,加一个两列的矩阵,加一个三列的矩阵...........


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x7f7f7f7f7f7f7f7f
using namespace std;
typedef long long LL; const int maxn = 1e5 + 10; int t, n, m, k;
int up[110], wall[maxn][110]; void init()
{
memset(wall, 0, sizeof(wall));
memset(up, 0, sizeof(up));
} int main()
{
cin>>t;
for(int cas = 1; cas <= t; cas++){
scanf("%d%d%d", &n, &m, &k);
init();
for(int i = 0; i < k; i++){
int x, y;
scanf("%d%d", &x, &y);
wall[x][y] = 1;
} LL ans = 0;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(wall[i][j]){
up[j] = i;
}
} for(int j = 1; j <= m; j++){
LL minn = inf;
for(int k = j; k > 0; k--){
minn = min(minn, (LL)(i - up[k]));
ans += minn;
}
}
} printf("Case #%d: %lld\n", cas, ans);
}
return 0;
}

TLE代码:


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; const int maxn = 1e5; int t, n, m, k;
int len[maxn], L[maxn][105], U[maxn][105];
//vector <LL> blackcol[105], blackrow[maxn];
priority_queue <int, vector<int>, greater<int> > blackcol[105], blackrow[maxn]; void init()
{
for(int i = 1; i <= n; i++){
while(!blackrow[i].empty()){
blackrow[i].pop();
}
blackrow[i].push(0);
//blackrow[i].clear();
//blackrow[i].push_back(0);
}
for(int i = 1; i <= m; i++){
while(!blackcol[i].empty()){
blackcol[i].pop();
}
blackcol[i].push(0);
//blackcol[i].clear();
//blackcol[i].push_back(0);
}
memset(L, 0, sizeof(L));
memset(U, 0, sizeof(U));
} int main()
{
cin>>t;
for(int cas = 1; cas <= t; cas++){
scanf("%d%d%d", &n, &m, &k);
init();
for(int i = 0; i < k; i++){
int x, y;
scanf("%d%d", &x, &y);
blackcol[y].push(x);
blackrow[x].push(y);
//blackcol[y].push_back(x);
//blackrow[x].push_back(y);
} /*for(int i = 1; i <= n; i++){
sort(blackrow[i].begin(), blackrow[i].end());
}
for(int i = 1; i <= m; i++){
sort(blackcol[i].begin(), blackcol[i].end());
}*/ for(int i = 1; i <= n; i++){
int now = blackrow[i].top();
blackrow[i].pop();
for(int j = 1; j <= m; j++){
if(!blackrow[i].empty()){
if(j == blackrow[i].top()){
now = blackrow[i].top();
blackrow[i].pop();
}
}
L[i][j] = min(L[i][j - 1] + 1, j - now); }
}
for(int j = 1; j <= m; j++){
int now = blackcol[j].top();
blackcol[j].pop();
for(int i = 1; i <= n; i++){
if(!blackcol[j].empty()){
if(i == blackcol[j].top()){
now = blackcol[j].top();
blackcol[j].pop();
}
}
U[i][j] = min(U[i - 1][j] + 1, i - now);
}
} LL ans = 0;
for(int j = 1; j <= m; j++){
memset(len, 0, sizeof(len));
for(int i = 1; i <= n; i++){
for(int k = 0; k < L[i][j]; k++){
len[k] = min(len[k] + 1, U[i][j - k]);
if(k)len[k] = min(len[k], len[k - 1]);
ans += len[k];
}
for(int k = L[i][j]; k < m; k++)len[k] = 0;
}
} printf("Case #%d: %lld\n", cas, ans);
}
return 0;
}

南京网络赛B-The writing on the wall的更多相关文章

  1. 2018ICPC南京网络赛

    2018ICPC南京网络赛 A. An Olympian Math Problem 题目描述:求\(\sum_{i=1}^{n} i\times i! \%n\) solution \[(n-1) \ ...

  2. HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)

    Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  3. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  4. HDU 4758 Walk Through Squares (2013南京网络赛1011题,AC自动机+DP)

    Walk Through Squares Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Oth ...

  5. 2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)

    2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a squa ...

  6. 2019 南京网络赛A

    南京网络赛自闭现场 https://nanti.jisuanke.com/t/41298 二维偏序经典题型 二维前缀和!!! #include<bits/stdc++.h> using n ...

  7. 计蒜客 2018南京网络赛 I Skr ( 回文树 )

    题目链接 题意 : 给出一个由数字组成的字符串.然后要你找出其所有本质不同的回文子串.然后将这些回文子串转化为整数后相加.问你最后的结果是多少.答案模 1e9+7 分析 : 应该可以算是回文树挺裸的题 ...

  8. The writing on the wall 南京网络赛2018B题

    样例输入复制 2 3 3 0 3 3 1 2 2 样例输出复制 Case #1: 36 Case #2: 20 题目来源 ACM-ICPC 2018 南京赛区网络预赛 题意: 就是求图中去掉涂黑的方格 ...

  9. 南京网络赛G-Lpl and Energy【线段树】

    During tea-drinking, princess, amongst other things, asked why has such a good-natured and cute Drag ...

随机推荐

  1. seqtk 的安装和使用

    seqtk 是一款针对fasta/fastq 文件进行处理的小程序,有很多的功能,速度很快,很方便: 源代码:https://github.com/lh3/seqtk 安装: git clone ht ...

  2. iOS: UUID and SSKeyChain

    需要加入SSKeyChain文件 传送门:SSKeyChain // // UniqueIDCreater.h // Housemart // // Created by Haozhen Li on ...

  3. SharePoint 2010用“localhost”方式访问网站,File not found问题处理方式

    场景:本地服务器上,用“localhost”方式访问网站:在某网站集(Site Collection)下的子网站(Sub Site)中,点击网站权限菜单(Site permissions)等关于调用L ...

  4. MySQL Server 5.7.13

    如何安装MySQL,MySQL两种安装方式_百度经验 http://jingyan.baidu.com/article/cd4c2979033a17756f6e6047.html "C:\P ...

  5. matlab imresize 改变图像大小

    功能:改变图像的大小. 用法:B = imresize(A,m)B = imresize(A,m,method)B = imresize(A,[mrows ncols],method) B = imr ...

  6. OpenCV学习:Mat结构中的数据共享机制

    使用Mat类,内存管理变得简单,不再像使用IplImage那样需要自己申请和释放内存. Mat是一个类,由两个数据部分组成:矩阵头(包含矩阵尺寸,存储方法,存储地址等信息)和一个指向存储所有像素值的矩 ...

  7. [spring] 对实体 "characterEncoding" 的引用必须以 ';' 分隔符结尾

    org.springframework.beans.factory.xml.XmlBeanDefinitionStoreException: Line 26 in XML document from ...

  8. python2.0_s12_day9_事件驱动编程&异步IO

    论事件驱动与异步IO 事件驱动编程是一种编程范式,这里程序的执行流由外部事件来决定.它的特点是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理.另外两种常见的编程范式是(单线程)同步以及 ...

  9. 转的:burp suite小例子

    Web安全测试时经常会遇到一些蹩脚的注射点,而因各种原因利用注射又无法获取网站管理账号或拥有网站管理权限却迟迟不能upload一个shell的时候,可能会权衡一下web权限与数据库信息,哪个是我们所需 ...

  10. PHP虚拟主机的配置

    今天配置了一下虚拟目录,以下是我的配置方法. 1  编辑httpd.conf,查找Include conf/extra/httpd-vhosts.conf,把前面注释符号“#”删掉. 2  编辑htt ...