南京网络赛B-The writing on the wall
- 30.43%
- 2000ms
- 262144K
Feeling hungry, a cute hamster decides to order some take-away food (like fried chicken for only 3030 Yuan).
However, his owner CXY thinks that take-away food is unhealthy and expensive. So she demands her hamster to fulfill a mission before ordering the take-away food. Then she brings the hamster to a wall.
The wall is covered by square ceramic tiles, which can be regarded as a n * mn∗m grid. CXY wants her hamster to calculate the number of rectangles composed of these tiles.
For example, the following 3 * 33∗3 wall contains 3636 rectangles:
Such problem is quite easy for little hamster to solve, and he quickly manages to get the answer.
Seeing this, the evil girl CXY picks up a brush and paint some tiles into black, claiming that only those rectangles which don't contain any black tiles are valid and the poor hamster should only calculate the number of the valid rectangles. Now the hamster feels the problem is too difficult for him to solve, so he decides to turn to your help. Please help this little hamster solve the problem so that he can enjoy his favorite fried chicken.
Input
There are multiple test cases in the input data.
The first line contains a integer TT : number of test cases. T \le 5T≤5.
For each test case, the first line contains 33 integers n , m , kn,m,k , denoting that the wall is a n \times mn×m grid, and the number of the black tiles is kk.
For the next kk lines, each line contains 22 integers: x\ yx y ,denoting a black tile is on the xx-th row and yy-th column. It's guaranteed that all the positions of the black tiles are distinct.
For all the test cases,
1 \le n \le 10^5,1\le m \le 1001≤n≤105,1≤m≤100,
0 \le k \le 10^5 , 1 \le x \le n, 1 \le y \le m0≤k≤105,1≤x≤n,1≤y≤m.
It's guaranteed that at most 22 test cases satisfy that n \ge 20000n≥20000.
Output
For each test case, print "Case #xx: ansans" (without quotes) in a single line, where xx is the test case number and ansans is the answer for this test case.
Hint
The second test case looks as follows:
样例输入复制
2
3 3 0
3 3 1
2 2
样例输出复制
Case #1: 36
Case #2: 20
题目来源
感觉这道题和暑假牛客网多校赛有道题很像 求数独子矩阵的 按那个方法敲了
T了 本来先用vector存的 然后排序 觉得这里可能会T 改成了优先队列
但是还是T了 可能有时候logn还是比较大吧 题解的算法是nmm 和 nmlogn比可能还是会小一点
实际上题解的方式和牛客网上这道题的思路是一样的 只不过少了处理相同字母这一部分 要更简单一点
AC代码:
相当于每次从一个矩阵的最右下角开始加一个一列的矩阵,加一个两列的矩阵,加一个三列的矩阵...........
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x7f7f7f7f7f7f7f7f
using namespace std;
typedef long long LL;
const int maxn = 1e5 + 10;
int t, n, m, k;
int up[110], wall[maxn][110];
void init()
{
memset(wall, 0, sizeof(wall));
memset(up, 0, sizeof(up));
}
int main()
{
cin>>t;
for(int cas = 1; cas <= t; cas++){
scanf("%d%d%d", &n, &m, &k);
init();
for(int i = 0; i < k; i++){
int x, y;
scanf("%d%d", &x, &y);
wall[x][y] = 1;
}
LL ans = 0;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(wall[i][j]){
up[j] = i;
}
}
for(int j = 1; j <= m; j++){
LL minn = inf;
for(int k = j; k > 0; k--){
minn = min(minn, (LL)(i - up[k]));
ans += minn;
}
}
}
printf("Case #%d: %lld\n", cas, ans);
}
return 0;
}
TLE代码:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<vector>
#include<set>
//#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int maxn = 1e5;
int t, n, m, k;
int len[maxn], L[maxn][105], U[maxn][105];
//vector <LL> blackcol[105], blackrow[maxn];
priority_queue <int, vector<int>, greater<int> > blackcol[105], blackrow[maxn];
void init()
{
for(int i = 1; i <= n; i++){
while(!blackrow[i].empty()){
blackrow[i].pop();
}
blackrow[i].push(0);
//blackrow[i].clear();
//blackrow[i].push_back(0);
}
for(int i = 1; i <= m; i++){
while(!blackcol[i].empty()){
blackcol[i].pop();
}
blackcol[i].push(0);
//blackcol[i].clear();
//blackcol[i].push_back(0);
}
memset(L, 0, sizeof(L));
memset(U, 0, sizeof(U));
}
int main()
{
cin>>t;
for(int cas = 1; cas <= t; cas++){
scanf("%d%d%d", &n, &m, &k);
init();
for(int i = 0; i < k; i++){
int x, y;
scanf("%d%d", &x, &y);
blackcol[y].push(x);
blackrow[x].push(y);
//blackcol[y].push_back(x);
//blackrow[x].push_back(y);
}
/*for(int i = 1; i <= n; i++){
sort(blackrow[i].begin(), blackrow[i].end());
}
for(int i = 1; i <= m; i++){
sort(blackcol[i].begin(), blackcol[i].end());
}*/
for(int i = 1; i <= n; i++){
int now = blackrow[i].top();
blackrow[i].pop();
for(int j = 1; j <= m; j++){
if(!blackrow[i].empty()){
if(j == blackrow[i].top()){
now = blackrow[i].top();
blackrow[i].pop();
}
}
L[i][j] = min(L[i][j - 1] + 1, j - now);
}
}
for(int j = 1; j <= m; j++){
int now = blackcol[j].top();
blackcol[j].pop();
for(int i = 1; i <= n; i++){
if(!blackcol[j].empty()){
if(i == blackcol[j].top()){
now = blackcol[j].top();
blackcol[j].pop();
}
}
U[i][j] = min(U[i - 1][j] + 1, i - now);
}
}
LL ans = 0;
for(int j = 1; j <= m; j++){
memset(len, 0, sizeof(len));
for(int i = 1; i <= n; i++){
for(int k = 0; k < L[i][j]; k++){
len[k] = min(len[k] + 1, U[i][j - k]);
if(k)len[k] = min(len[k], len[k - 1]);
ans += len[k];
}
for(int k = L[i][j]; k < m; k++)len[k] = 0;
}
}
printf("Case #%d: %lld\n", cas, ans);
}
return 0;
}
南京网络赛B-The writing on the wall的更多相关文章
- 2018ICPC南京网络赛
2018ICPC南京网络赛 A. An Olympian Math Problem 题目描述:求\(\sum_{i=1}^{n} i\times i! \%n\) solution \[(n-1) \ ...
- HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)
Divide Groups Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)
Count The Pairs Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others ...
- HDU 4758 Walk Through Squares (2013南京网络赛1011题,AC自动机+DP)
Walk Through Squares Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Oth ...
- 2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)
2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a squa ...
- 2019 南京网络赛A
南京网络赛自闭现场 https://nanti.jisuanke.com/t/41298 二维偏序经典题型 二维前缀和!!! #include<bits/stdc++.h> using n ...
- 计蒜客 2018南京网络赛 I Skr ( 回文树 )
题目链接 题意 : 给出一个由数字组成的字符串.然后要你找出其所有本质不同的回文子串.然后将这些回文子串转化为整数后相加.问你最后的结果是多少.答案模 1e9+7 分析 : 应该可以算是回文树挺裸的题 ...
- The writing on the wall 南京网络赛2018B题
样例输入复制 2 3 3 0 3 3 1 2 2 样例输出复制 Case #1: 36 Case #2: 20 题目来源 ACM-ICPC 2018 南京赛区网络预赛 题意: 就是求图中去掉涂黑的方格 ...
- 南京网络赛G-Lpl and Energy【线段树】
During tea-drinking, princess, amongst other things, asked why has such a good-natured and cute Drag ...
随机推荐
- Spring 4 官方文档学习(十)数据访问之DAO支持
1.介绍 Spring 中 Data Access Object (DAO)支持 的目标是以一种一致的方式更简单的使用JDBC.Hibernate.JPA或JDO等数据访问技术.可以在前面说的几种数据 ...
- javascript -- 判断是否为某个数据类型
为何不用其他方法,因为下面的写法考虑了各种兼容性.判断是否为数组isArray = function (source) { return '[object Array]' == Object.p ...
- Python中tab键自动补全功能的配置
新手学习Python的时候,如何没有tab键补全功能,我感觉那将是一个噩梦,对于我们这种菜鸟来说,刚接触python,对一切都不了解,还好有前辈们的指导,学习一下,并记录下来,还没有学习这个功能小伙伴 ...
- 在VS中写js的同学注意了。。。。。。。。。。。。。。。。。。。
在vs中安装扩展jsdoc就可以实现这个功能
- 【Java面试题】49 垃圾回收的优点和原理。并考虑2种回收机制。
1.Java语言最显著的特点就是引入了垃圾回收机制,它使java程序员在编写程序时不再考虑内存管理的问题. 2.由于有这个垃圾回收机制,java中的对象不再有“作用域”的概念,只有引用的对象才有“作用 ...
- openal 基础知识4
二函数 1. buffer函数 void alGenBuffers(ALsizei n /* buffer数*/, ALuint * buffers /* buffer ID数组*/); void a ...
- Page与Loaded
When navigate to page, loaded event will be triggered. Back to page, loaded event will be triggered ...
- css揭秘读书笔记
currentColor属性让hr和段落相同的颜色: div { color: red; } hr { background: currentColor; /* 一定要设置高度*/ height: 0 ...
- swift - UISwitch 的用法
具体代码如下,和oc的使用没有差别: 创建: let hswitch = UISwitch() /*创建开关,以及监听它值的改变,代码如下*/ //开关位置 hswitch.center = CGPo ...
- python中模块,包,库
模块:就是.py文件,里面定义了一些函数和变量,需要的时候就可以导入这些模块. 包:在模块之上的概念,为了方便管理而将文件进行打包.包目录下第一个文件便是 __init__.py,然后是一些模块文件和 ...