POJ 3347 Kadj Squares (计算几何+线段相交)
题意:从左至右给你n个正方形的边长,接着这些正方形都按照旋转45度以一角为底放置坐标轴上,最左边的正方形左端点抵住y轴,后面的正方形依次紧贴前面所有正方形放置,问从上方向下看去,有哪些正方形是可以被看到的(如图)
题解:首先找到每个正方形左右端点的坐标转化为一条线段,接着寻找哪些线段被其他某些条线段覆盖,那这些被覆盖的线段就不能被看到了
寻找被覆盖的线段利用区间贪心,我们按照左端点升序、左端点相同右端点降序排序,则左端点一定被前面的线段覆盖,接着对于右端点使用单调栈的思想寻找可以看到的线段就好
找左端点时就将此正方形与之前的每个正方形紧贴找最大的值(关键)
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1E-8
/*注意可能会有输出-0.000*/
#define Sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
#define Cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
#define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
#define mul(a,b) (a<<b)
#define dir(a,b) (a>>b)
typedef long long ll;
typedef unsigned long long ull;
const int Inf=<<;
const ll INF=1ll<<;
const double Pi=acos(-1.0);
const int Mod=1e9+;
const int Max=;
int num[Max],vis[Max];
int line[Max];
struct node
{
int x,y,pos;
} lin[Max];
bool cmp(node a,node b)
{
if(a.x==b.x)
return a.y>b.y;
return a.x<b.x;
}
int Jud(int n)
{
int coun=;
for(int i=; i<n; ++i)
{
lin[i].x=line[i],lin[i].y=line[i]+num[i],lin[i].pos=i+;
}
sort(lin,lin+n,cmp);
vis[coun++]=;
node now=lin[];
for(int i=;i<n;++i)
{
if(lin[i].y>now.y)
{
for(int j=coun-;j>=;--j)
{
if(lin[i].x<=lin[vis[j]].y)//找之前的lin(不一定连续)
coun--;
else
break;
}
now=lin[i];
vis[coun++]=i;//注意这儿记录的值
}
}
for(int i=;i<coun;++i)
vis[i]=lin[vis[i]].pos;
sort(vis,vis+coun);
return coun;
}
int main()
{
int n;
while(~scanf("%d",&n)&&n)
{
for(int i=; i<n; ++i)
{
scanf("%d",&num[i]);
num[i]*=;//边长变成对角线,但是同比例扩大sqrt(2.0)后就变成2倍了
}
line[]=;
for(int i=; i<n; ++i)
{
line[i]=;
for(int j=; j<i; ++j)
{
int tem=num[j]-abs(num[i]-num[j])/+line[j];//与每个之前的正方形紧贴在一起的x轴坐标
line[i]=max(line[i],tem);//一定是x轴最大的值
}
}
int coun=Jud(n);
for(int i=; i<coun; ++i)
printf("%d%c",vis[i],i==coun-?'\n':' ');
}
return ;
}
POJ 3347 Kadj Squares (计算几何+线段相交)的更多相关文章
- POJ 3347 Kadj Squares 计算几何
求出正方形的左右端点,再判断是否覆盖 #include <iostream> #include <cstdio> #include <cstring> #inclu ...
- POJ 3347 Kadj Squares
Kadj Squares Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 2132 Accepted: 843 Descr ...
- POJ 3347 Kadj Squares (计算几何)
题目: Description In this problem, you are given a sequence S1, S2, ..., Sn of squares of different si ...
- POJ 3347 Kadj Squares (线段覆盖)
题目大意:给你几个正方形的边长,正方一个顶点在x轴上然后边与x轴的夹角为45度,每个正方形都是紧贴的,问从上面看能看的正方形的编号 题目思路:线段覆盖,边长乘上2防止产生小数,求出每个正方形与x轴平行 ...
- 简单几何(线段覆盖) POJ 3347 Kadj Squares
题目传送门 题意:告诉每个矩形的边长,它们是紧贴着的,问从上往下看,有几个还能看到. 分析:用网上猥琐的方法,将边长看成左端点到中心的距离,这样可以避免精度问题.然后先求出每个矩形的左右端点,然后如果 ...
- [poj] 3347 Kadj Square || 计算几何的“线段覆盖”
原题 多组数据,给出n个正方形的边长,使他们以45度角倾斜的情况下最靠左(在第一象限内),如图.求从上看能看到哪几个完整的正方形. 借鉴于https://www.cnblogs.com/Ritchie ...
- POJ 1066 Treasure Hunt (线段相交)
题意:给你一个100*100的正方形,再给你n条线(墙),保证线段一定在正方形内且端点在正方形边界(外墙),最后给你一个正方形内的点(保证不再墙上) 告诉你墙之间(包括外墙)围成了一些小房间,在小房间 ...
- POJ 2653 Pick-up sticks (线段相交)
题意:给你n条线段依次放到二维平面上,问最后有哪些没与前面的线段相交,即它是顶上的线段 题解:数据弱,正向纯模拟可过 但是有一个陷阱:如果我们从后面向前枚举,找与前面哪些相交,再删除前面那些相交的线段 ...
- POJ 2653 Pick-up sticks【线段相交】
题意:n根木棍随意摆放在一个平面上,问放在最上面的木棍是哪些. 思路:线段相交,因为题目说最多有1000根在最上面.所以从后往前处理,直到木棍没了或者最上面的木棍的总数大于1000. #include ...
随机推荐
- linux大文件分割 split命令
inux split 命令 功能说明:切割文件. 语 法:split [--help][--version][-][-b ][-C ][-l ][要切割的文件][输出文件名] 补充说明:split可将 ...
- Javascript操作DOM常用API总结
基本概念 在讲解操作DOM的api之前,首先我们来复习一下一些基本概念,这些概念是掌握api的关键,必须理解它们. Node类型 DOM1级定义了一个Node接口,该接口由DOM中所有节点类型实现.这 ...
- REDHAT一总复习1 NTP更改时区,并验证时区设置是否正确
把计算机时区调整到巴哈马(这是个啥地方?听都没听过.) 使用 tzselect 进行确定时区,并进行可对话性的设置,按照对应的序号,射进去就行了. 使用:timedatectl set-timezo ...
- MFC双缓存技术代码
屏蔽背景刷新,在View中添加对WM_ERASEBKGND的响应,直接返回TRUE: BOOL CTEMV1View::OnEraseBkgnd(CDC* pDC) { // TODO: 在此添加消息 ...
- react+redux官方实例TODO从最简单的入门(4)-- 改
上一篇文章实现了<删>这个功能,那么我们继续添加下一功能--<改> 这个修改的功能是通过双击每个子选项实现 第一步:按规矩来,添加一个状态声明 第二步:action中约定我们要 ...
- css text-overflow:ellipsis 文字多余剪切
text-overflow: ellipsis;多度剪切white-space: nowrap;禁止换行overflow: hidden;多余隐藏
- Java关于IO流的介绍
JDK提供的流继承了四大类:InputStream(字节输入流).OutputStream(字节输出流).Reader(字符输入流).Writer(字符输出流). 字符流和字节流的主要区别: ...
- 【JavaScript】JS 中 原始字符串 和 HTML 字符转换
参考资料:http://www.sjyhome.com/javascript/js-html-escape.html JS转换HTML转义符 SJY • 发表于:2013年10月05日 17:04 • ...
- C++基础知识面试精选100题系列(11-20题)[C++ basics]
[原文链接] http://www.cnblogs.com/hellogiser/p/100-interview-questions-of-cplusplus-basics-11-20.html [题 ...
- Android issues
1. Android studio 2.0 Error:Exception in thread "main" java.lang.UnsupportedClassVersionEr ...