Graph constructive problems are back! This time the graph you are asked to build should match the following properties.

The graph is connected if and only if there exists a path between every pair of vertices.

The diameter (aka "longest shortest path") of a connected undirected graph is the maximum number of edges in the shortest path between any pair of its vertices.

The degree of a vertex is the number of edges incident to it.

Given a sequence of n n integers a 1 ,a 2 ,…,a n  a1,a2,…,an construct a connected undirected graph of n n vertices such that:

  • the graph contains no self-loops and no multiple edges;
  • the degree d i  di of the i i -th vertex doesn't exceed a i  ai (i.e. d i ≤a i  di≤ai );
  • the diameter of the graph is maximum possible.

Output the resulting graph or report that no solution exists.

Input

The first line contains a single integer n n (3≤n≤500 3≤n≤500 ) — the number of vertices in the graph.

The second line contains n n integers a 1 ,a 2 ,…,a n  a1,a2,…,an (1≤a i ≤n−1 1≤ai≤n−1 ) — the upper limits to vertex degrees.

Output

Print "NO" if no graph can be constructed under the given conditions.

Otherwise print "YES" and the diameter of the resulting graph in the first line.

The second line should contain a single integer m m — the number of edges in the resulting graph.

The i i -th of the next m m lines should contain two integers v i ,u i  vi,ui (1≤v i ,u i ≤n 1≤vi,ui≤n , v i ≠u i  vi≠ui ) — the description of the i i -th edge. The graph should contain no multiple edges — for each pair (x,y) (x,y) you output, you should output no more pairs (x,y) (x,y) or (y,x) (y,x) .

Examples

Input
3
2 2 2
Output
YES 2
2
1 2
2 3
Input
5
1 4 1 1 1
Output
YES 2
4
1 2
3 2
4 2
5 2
Input
3
1 1 1
Output
NO

题意:构造一棵树,使得直径最长,需要满足每个点的度数di<=ai。

思路:我们选择ai最小的两个最为直径端点,然后把di>1的加到直径上去,剩下的度数为1的加到直径的枝桠上。

昨天没时间了没有写输出“NO”,WA3了。今天加上了就AC了。

给我30s可能就A了,加上最后一题水题没做。这一次CF血亏。

#include<bits/stdc++.h>
#define pii pair<int,int>
#define F first
#define S second
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int N,sum,L,S,T;
int b[maxn],ans; int f[maxn],c[maxn],tot;
pii a[maxn];
int main()
{
scanf("%d",&N); ans=;
rep(i,,N) scanf("%d",&a[i].F),a[i].S=i;
sort(a+,a+N+);
b[++L]=a[].S; b[++L]=a[].S;
int pre=b[],bg=;
rep(i,,N){
if(a[i].F>){
f[++tot]=pre,c[tot]=a[i].S,pre=a[i].S,ans++;
if(!bg) bg=i;
}
}
f[++tot]=pre,c[tot]=b[];
int pos=bg,F=true;
rep(i,,bg-) {
if(a[i].F==) {
while(a[pos].F<=){
pos++; if(pos==N+) {F=false; break;}
}
if(!F) break;
a[pos].F--; f[++tot]=a[i].S,c[tot]=a[pos].S;
}
else break;
}
if(!F||tot!=N-) puts("NO");
else {
printf("YES %d\n%d\n",ans,N-);
rep(i,,tot) printf("%d %d\n",f[i],c[i]);
}
return ; }

CF1082D:Maximum Diameter Graph (简单构造)的更多相关文章

  1. cf1082D Maximum Diameter Graph(构造+模拟+细节)

    QWQ不得不说 \(cf\)的\(edu\ round\)出这种东西 有点太恶心了 题目大意:给你\(n\)个点,告诉你每个点的最大度数值(也就是说你的度数要小于等于这个),让你构造一个无向图,使其满 ...

  2. [CF1082D]Maximum Diameter Graph

    题目描述 Description Graph constructive problems are back! This time the graph you are asked to build sh ...

  3. Codeforces 1082D Maximum Diameter Graph (贪心构造)

    <题目链接> 题目大意:给你一些点的最大度数,让你构造一张图,使得该图的直径最长,输出对应直径以及所有的边. 解题分析:一道比较暴力的构造题,首先,我们贪心的想,要使图的直径最长,肯定是尽 ...

  4. Educational Codeforces Round 55 (Rated for Div. 2) D. Maximum Diameter Graph (构造图)

    D. Maximum Diameter Graph time limit per test2 seconds memory limit per test256 megabytes inputstand ...

  5. Educational Codeforces Round 55 (Rated for Div. 2):D. Maximum Diameter Graph

    D. Maximum Diameter Graph 题目链接:https://codeforces.com/contest/1082/problem/D 题意: 给出n个点的最大入度数,要求添加边构成 ...

  6. D. Maximum Diameter Graph 贪心+图论+模拟

    题意:给出n个点的度数列 上限(实际点可以小于该度数列)问可以构造简单路最大长度是多少(n个点要连通 不能有平行边.重边) 思路:直接构造一条长链  先把度数为1的点 和度数大于1的点分开  先把度数 ...

  7. CodeForces 1082 D Maximum Diameter Graph

    题目传送门 题意:现在有n个点,每个点的度数最大为di,现在要求你构成一棵树,求直径最长. 题解:把所有度数为2的点先扣出来,这些就是这颗树的主干,也就是最长的距离. 然后我们把度数为2的点连起来,之 ...

  8. Codeforces 1082 D. Maximum Diameter Graph-树的直径-最长链-构造题 (Educational Codeforces Round 55 (Rated for Div. 2))

    D. Maximum Diameter Graph time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  9. CF1157D N Problems During K Days(简单构造)

    题目 题目 原数据是水成啥样了,\(<\longrightarrow <=,>=\longrightarrow <=,\)这也能过 被\(hack\)后身败名裂 做法 简单的贪 ...

随机推荐

  1. mydumper原理介绍

      mydumper的安装:http://www.cnblogs.com/lizhi221/p/7010174.html   mydumper介绍   MySQL自身的mysqldump工具支持单线程 ...

  2. java static成员变量方法和非static成员变量方法的区别

    这里的普通方法和成员变量是指,非静态方法和非静态成员变量首先static是静态的意思,是修饰符,可以被用来修饰变量或者方法. static成员变量有全局变量的作用       非static成员变量则 ...

  3. ruby中的回调方法和钩子方法

    在ruby中,当某些特定的事件发生时,将调用回调方法和钩子方法.事件有如下几种: 调用一个不存在的对象方法 类混含一个模块 定义类的子类 给类添加一个实例方法 给对象添加一个单例方法 引用一个不存在的 ...

  4. myeclipse安装jadclipse(反编译工具)

    我是myeclipse5. 的IDE工具.为了能反编译class文件,上网搜索了很多资料,终于找到一下的一段资料: .将jad.exe 复制到myeclipse安装目录的jre/bin目录下, 如:C ...

  5. Sublime Text 3 插件的安装、升级和卸载

    Sublime Text 3 插件的安装.升级和卸载 快捷键:ctrl+shift+p打开命令面板,如图: 1,插件安装: 输入:install ,选择“Install package” ,如图: 然 ...

  6. HDU 2896 病毒侵袭(AC自动机)题解

    题意:给你n个模式串,再给你m个主串,问你每个主串中有多少模式串,并输出是哪些.注意一下,这里给的字符范围是可见字符0~127,所以要开130左右. 思路:用字典树开的时候储存编号,匹配完成后set记 ...

  7. about SpringBoot学习后记

    <SpringBoot实战>第一章节入门的名称为Spring风云再起 看起来Spring的功能确实受Java开发者喜爱 在SpringBoot中,继续将Spring框架做了另一次的封装使框 ...

  8. [kata] Playing with digits

    package kata_011; /** * Some numbers have funny properties. For example: * * 89 --> 8¹ + 9² = 89 ...

  9. LA 6891 Money Transfers(最短路)

    https://vjudge.net/problem/UVALive-6891 题意: 给定一个加权无向图,还有起点和终点,现在有个SWERC公司,拥有图中的m个顶点,现在可以使图中的每一条边都加上k ...

  10. [原][译][osgearth]API加载地球(OE官方文档翻译)

    原文参考:http://docs.osgearth.org/en/latest/developer/maps.html#programmatic-map-creation 本人翻译水平有限... 加载 ...