#tensor和numpy

import torch

import numpy as np

numpy_tensor = np.random.randn(3,4)

print(numpy_tensor)

#将numpy的ndarray转换到tendor上

pytorch_tensor1 = torch.Tensor(numpy_tensor)

pytorch_tensor2 = torch.from_numpy(numpy_tensor)

print(pytorch_tensor1)

print(pytorch_tensor2)

#将pytorch的tensor转换到numpy的ndarray

numpy_array = pytorch_tensor1.numpy()   #如果pytorch在cpu上

print(numpy_array)

#tensor的一些属性,得到tensor的大小

print(pytorch_tensor1.shape)

print(pytorch_tensor1.size())

print(pytorch_tensor1.type()) #得到tensor的数据类型

print(pytorch_tensor1.dim()) #得到tensor的维度

print(pytorch_tensor1.numel()) #得到tensor所有元素的个数

x = torch.rand(3,2)

x.type(torch.DoubleTensor)

print(x)

np_array = x.numpy()

print(np_array.dtype)

[[ 1.05174423  1.09272735  0.46027768 -0.03255727]
[ 0.57027229 1.22165706 -0.77909099 -0.17678552]
[ 0.02112402 -1.08971068 0.72317744 -1.45482622]]
tensor([[ 1.0517, 1.0927, 0.4603, -0.0326],
[ 0.5703, 1.2217, -0.7791, -0.1768],
[ 0.0211, -1.0897, 0.7232, -1.4548]])
tensor([[ 1.0517, 1.0927, 0.4603, -0.0326],
[ 0.5703, 1.2217, -0.7791, -0.1768],
[ 0.0211, -1.0897, 0.7232, -1.4548]], dtype=torch.float64)
[[ 1.0517442 1.0927273 0.46027768 -0.03255726]
[ 0.57027227 1.221657 -0.779091 -0.17678553]
[ 0.02112402 -1.0897107 0.72317743 -1.4548262 ]]
torch.Size([3, 4])
torch.Size([3, 4])
torch.FloatTensor
2
12
tensor([[0.1810, 0.5168],
[0.9859, 0.1294],
[0.9262, 0.6952]])
float32

#Tensor的操作1

import torch

x = torch.ones(2,3)

print(x)

print(x.type())

x = x.long()

print(x.type())

x = x.float()

print(x.type())

y = torch.rand(3,4)

print(y)

#沿着行取最大值

maxval,maxindex = torch.max(y,dim=1)

print(maxval,'\n',maxindex)

#沿着行对y求和

sum = torch.sum(y,dim=1)

print(sum)

tensor([[1., 1., 1.],
[1., 1., 1.]])
torch.FloatTensor
torch.LongTensor
torch.FloatTensor
tensor([[0.8910, 0.0130, 0.9600, 0.6760],
[0.5184, 0.6240, 0.9589, 0.2151],
[0.6904, 0.3474, 0.7502, 0.2055]])
tensor([0.9600, 0.9589, 0.7502])
tensor([2, 2, 2])
tensor([2.5400, 2.3164, 1.9936])

#Tensor操作2

import torch

x = torch.rand(3,2)

print(x)

print(x.size())

#增加一个维度

x = x.unsqueeze(0)

print(x.size())

#减少一个维度

x = x.squeeze(0)

print(x.size())

#增加回来

x = x.unsqueeze(1)

print(x.size())

#使用permute和transpose来对矩阵维度进行变换

#permute 可以重新排列tensor的维度

#transpose 可以交换两个维度

x = x.permute(1,0,2)

print(x.size())

x = x.transpose(0,2)

print(x.size())

tensor([[0.9131, 0.2160],
[0.0987, 0.5013],
[0.1715, 0.8862]])
torch.Size([3, 2])
torch.Size([1, 3, 2])
torch.Size([3, 2])
torch.Size([3, 1, 2])
torch.Size([1, 3, 2])
torch.Size([2, 3, 1])

#使用view对tensor进行reshape

import torch

x = torch.rand(3,4,5)

print(x.shape)

x = x.view(-1,5)

print(x.size())

x = x.view(60)

print(x.shape)

#两个Tensor求和

a = torch.rand(3,4)

b = torch.rand(3,4)

c = a + b

print(c)

z = torch.add(a,b)

print(z)

torch.Size([3, 4, 5])
torch.Size([12, 5])
torch.Size([60])
tensor([[0.8822, 1.3766, 1.3586, 0.8951],
[1.0096, 0.5511, 0.2035, 0.9684],
[1.2502, 0.0963, 1.3955, 0.9479]])
tensor([[0.8822, 1.3766, 1.3586, 0.8951],
[1.0096, 0.5511, 0.2035, 0.9684],
[1.2502, 0.0963, 1.3955, 0.9479]])

import torch

x = torch.ones(4,4)

print(x)

x[1:3,1:3] = 2

print(x)

tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
tensor([[1., 1., 1., 1.],
[1., 2., 2., 1.],
[1., 2., 2., 1.],
[1., 1., 1., 1.]])

pytorch之Tensor的更多相关文章

  1. 对pytorch中Tensor的剖析

    不是python层面Tensor的剖析,是C层面的剖析. 看pytorch下lib库中的TH好一阵子了,TH也是torch7下面的一个重要的库. 可以在torch的github上看到相关文档.看了半天 ...

  2. pytorch中tensor数据和numpy数据转换中注意的一个问题

    转载自:(pytorch中tensor数据和numpy数据转换中注意的一个问题)[https://blog.csdn.net/nihate/article/details/82791277] 在pyt ...

  3. [Pytorch]Pytorch中tensor常用语法

    原文地址:https://zhuanlan.zhihu.com/p/31494491 上次我总结了在PyTorch中建立随机数Tensor的多种方法的区别. 这次我把常用的Tensor的数学运算总结到 ...

  4. [Pytorch]Pytorch的tensor变量类型转换

    原文:https://blog.csdn.net/hustchenze/article/details/79154139 Pytorch的数据类型为各式各样的Tensor,Tensor可以理解为高维矩 ...

  5. Pytorch的tensor数据类型

    基本类型 torch.Tensor是一种包含单一数据类型元素的多维矩阵. Torch定义了七种CPU tensor类型和八种GPU tensor类型: Data tyoe CPU tensor GPU ...

  6. pytorch中tensor张量数据基础入门

    pytorch张量数据类型入门1.对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot ...

  7. pytorch之Tensor与Variable的区别

    首先在变量的操作上:Tensor对象支持在原对象内存区域上修改数据,通过“+=”或者torch.add()方法而Variable不支持在原对象内存区域上修改数据Variable对象可求梯度,并且对Va ...

  8. pytorch 创建tensor的几种方法

    tensor默认是不求梯度的,对应的requires_grad是False. 1.指定数值初始化 import torch #创建一个tensor,其中shape为[2] tensor=torch.T ...

  9. pytorch中tensor的属性 类型转换 形状变换 转置 最大值

    import torch import numpy as np a = torch.tensor([[[1]]]) #只有一个数据的时候,获取其数值 print(a.item()) #tensor转化 ...

随机推荐

  1. HTML学习---HTTP基础学习详解

    1.HTTP访问服务器原理 客户端输入IP->查找本地hosts缓存->有则直接用获取到的IP访问服务器->服务器响应后返回客户端->客户端页面显示               ...

  2. 【MyBatis】MyBatis实现CRUD操作

    1.实现基本CRUD功能 使用MyBatis对数据完整的操作,也就是CRUD功能的实现.根据之前的内容,要想实现CRUD,只需要进行映射文件的配置. 范例:修改EmpMapper.xml文件,实现CR ...

  3. 沉淀再出发:在python3中导入自定义的包

    沉淀再出发:在python3中导入自定义的包 一.前言 在python中如果要使用自己的定义的包,还是有一些需要注意的事项的,这里简单记录一下. 二.在python3中导入自定义的包 2.1.什么是模 ...

  4. html禁用缓存

    <!-- 禁用缓存 --><meta http-equiv="pragma" content="no-cache"><META H ...

  5. Android Volley源码分析及扩展

    转载请标明出处: http://www.cnblogs.com/why168888/p/6681232.html 本文出自:[Edwin博客园] Volley 介绍 Android系统中主要提供了两种 ...

  6. Xiaocms验证码绕过分析

    事实证明这套程序验证码没有办法存在绕过.具体分析在t00ls上.但是这套程序获取验证码的逻辑是存在问题的,思路是可以借鉴的. 第一次请求后台是,红线位置是请求验证码的url. 当我们第一次请求时,也就 ...

  7. 3.C++和C混合编程

    最近经常看到头文件中有 #ifdef __cplusplus extern "C" { #endif ....... #ifdef __cplusplus } #endif 这样的 ...

  8. PHP一个表单多个提交按钮解决方法

    1.html页面<注:多个按钮的name值必须相同> <form action="{:U('Index/index')}" method="post&q ...

  9. XMPP备忘笔记

    xmpp中文翻译计划: http://wiki.jabbercn.org/%E9%A6%96%E9%A1%B5 XEP-0004: 数据表单 摘要: 本文定义了一个XMPP扩展协议用于数据表单,可以用 ...

  10. DPDK中使用VFIO的配置

    VFIO VFIO是一个可以安全地把设备I/O.中断.DMA等暴露到用户空间(userspace),从而可以在用户空间完成设备驱动的框架.用户空间直接设备访问,虚拟机设备分配可以获得更高的IO性能. ...