100-Days-Of-ML-Code 评注版(Day 3)
Day3_Multiple_Linear_Regression(多元线性回归)
本文引用自 Multiple_Linear_Regression, 对其中内容进行了评注与补充说明。

回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。线性回归是回归分析中最为常用的一种方法,线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为\(y=w \times x+e\),e为误差服从均值为0的正态分布。回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
导入数据
导入数据并划分出训练数据库与测试数据集。
dataset = pd.read_csv('50_Startups.csv')
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 4 ].values
对分类变量进行编码
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X[: , 3] = labelencoder.fit_transform(X[ : , 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()
X = X[: , 1:]
划分测试集、训练集
from sklearn.cross_validation import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
进行回归
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, Y_train)
结果预测
将测试数据集输入线性回归方程,计算预测结果。
y_pred = regressor.predict(X_test)
其他
需要说明的是,这样简单的做法不是十分正确的,进行线性回归后还要进行假设验证、残差分析,sklearn对这方面支持的并不好,进行严谨的回归分析,还是向大家推荐R。
共线性
假设有k个自变量的多元线性回归模型: \(y=w_{1} \times x_{1} + w_{2} \times x_{2} + \cdots + w_{3} \times x_{3} + e\)。常常出现各变量之间存在线性相关问题,比如\(x_{3} = x_{2} + x_{1} + e\)。带来的问题是,当\(x_{1}\)、\(x_{2}\)、\(x_{3}\)微小的变化可能带来输出y巨大的变化,而其他非变量的改变可能对y没有什么大的影响,这会影响模型的可解释性,因此需要消除共线性问题。
多重共线性是使用线性回归算法时经常遇到的一个问题。在其他算法中,例如决策树和贝叶斯,前者的建模过程是逐步递进,每次拆分只有一个变量参与,这种建模机制含有抗多重共线性干扰的功能;后者干脆假定变量之间是相互独立的,因此从表面上看,也没有多重共线性的问题。但是对于回归算法,不论是一般回归,逻辑回归,或存活分析,都要同时考虑多个预测因子,因此多重共线性是不可避免需要面对的,在很多时候,多重共线性是一个普遍的现象。在构造预测模型时如何处理多重共线性是一个比较微妙的议题。既不能不加控制,又不能一刀切,认为凡是多重共线性就应该消除。通常处理共线性问题采用以下几种方法:
- 逐步回归
- 岭回归
- lasso回归
参考资料
[2]: 干货 :这7种回归分析技术 学了不后悔
[3]: 对于多重共线性的简单理解
100-Days-Of-ML-Code 评注版(Day 3)的更多相关文章
- 100个Swift必备Tips(第二版)
100个Swift必备Tips(第二版) 新年第一天,给大家一本电子书,希望新的一年里,步步高升. GitHub
- 100-Days-Of-ML-Code 评注版(Day 1)
Day 1_Data PreProcessing(数据预处理) 本文引用自 Day 1_Data PreProcessing, 对其中内容进行了评注与补充说明. 导入数据 dataset = pd.r ...
- 即学即会 Java 程序设计基础视频教程(100课整)无水印版
课程总共包含100个课时,总授课长达27多个小时,内容覆盖面广,从入门到精通,授课通俗易懂,分析问题独到精辟通过本套视频的学习,学员能够快速的掌握java编程语言,成为java高手. 课程目录:课时1 ...
- 100-Days-Of-ML-Code 评注版(Day 2)
Day2_Simple_Linear_Regression(一元线性回归) 本文引用自 Simple Linear Regression, 对其中内容进行了评注与补充说明. 回归分析是一种预测性的建模 ...
- VS Code mac版全局搜索失效最简单解法
网上百度到的一些说法,说是添加以下命令行 "search.exclude": { "system/": true, "!/system/**/*.ps ...
- 今天,VS Code 五岁了。
时光飞逝,岁月如梭.今天,VS Code 迎来了 5 岁的生日. 回想起 VS Code 发布的那一天,仿佛还在昨天. 回顾 VS Code 这五年的发展,总是能给我们开发者带了无限的惊喜. 2015 ...
- Azure SQL 数据库最新版本现已提供预览版
Tiffany Wissner 数据平台营销高级总监 我们之前在11月宣布将提供新的预览版,在该预览版中我们引入了接近完整的 SQL Server 引擎兼容性和更为高级的性能,这些都代表了下一代的 ...
- 100本最棒的web前端图书推荐
前端技术,要学习的内容太多了,当你不知道从哪里开始的时候,你就先从看书开始,边看书边码代码,这个是学习编程必须的过程,因为你看一百遍,还不如自己写一遍,写一遍,第一可以加印象,第二便于更好的理解. 熟 ...
- Redis Windows版安装详解
一.下载Redis Redis下载有两个途径一是官网.二是Github,由于Redis官方只支持Linux系统,所以官网是没有Windows版本的,不过微软开源团队维护了一份所以我们可以使用这个. 官 ...
随机推荐
- python面向对象编程(1)——基本概念,术语,self,构造器
1 python面向对象命名规范 类名通常由大写字母打头.这是惯例标准. 数据值应该使用名词作为名字,方法使用动词加对象的方式,若使用混合记法,则方法名的第一个字母首字母小写,后面的单词的首字母大写 ...
- Python学习---网页爬虫[下载图片]
爬虫学习--下载图片 1.主要用到了urllib和re库 2.利用urllib.urlopen()函数获得页面源代码 3.利用正则匹配图片类型,当然正则越准确,下载的越多 4.利用urllib.url ...
- 骑士周游问题跳马问题C#实现(附带WPF工程代码)
骑士周游问题,也叫跳马问题. 问题描述: 将马随机放在国际象棋的8×8棋盘的某个方格中,马按走棋规则进行移动.要求每个方格只进入一次,走遍棋盘上全部64个方格. 代码要求: 1,可以任意选定马在棋盘上 ...
- 8、Node.js Buffer(缓冲区)
内容:Buffer与字符编码,Buffer创建.写入.读取.转换成JSON对象.合并.比较.拷贝.裁剪.长度 Buffer 与字符编码Buffer 实例一般用于表示编码字符的序列,比如 UTF-8 . ...
- Linux 系统性能监控命令详解
Linux 系统性能监控命令详解 CPU MEMORY IO NETWORK LINUX进程内存占用查看方法 系统负载过重时往往会引起其它子系统的问题,比如:->大量的读入内存的IO请求(pag ...
- 虚拟机下的CentOS无法上网的解决办法
1.首先保证虚拟机的网络适配器为NAT模式 2.设置虚拟机的“编辑”-->“虚拟网络编辑器”中的VMnet8的DHCP的设置两个选项都勾选上. 3.设置物理主机,保证虚拟网关的IP地址为自动获取 ...
- es6面试题--Promise相关
1. const promise = new Promise((resolve, reject) => { console.log(); resolve(); console.log(); }) ...
- 绕过disable_functions执行命令实验
绕过disable_functions执行命令实验 看下disable函数,所有命令函数都被禁用: 编译64位共享库: 命令成功执行: 参考链接: https://www.freebuf.com/ar ...
- Kali-linux查看打开的端口
对一个大范围的网络或活跃的主机进行渗透测试,必须要了解这些主机上所打开的端口号.在Kali Linux中默认提供了Nmap和Zenmap两个扫描端口工具.为了访问目标系统中打开的TCP和UDP端口,本 ...
- 关于C#读取xml小例子
1.首先这是一个xml文件<?xml version="1.0" encoding="utf-8"?><Document> <Ev ...