Ultra-QuickSort
Time Limit: 7000MS   Memory Limit: 65536K
Total Submissions: 70674   Accepted: 26538

Description

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,

Ultra-QuickSort produces the output

0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0

Source

 
题目意思:
对于给定的无序数组
求除经过多少次相邻的元素交换之后,可以使得数组升序
就是求一个数列的逆序数
 
 
方法一:
树状数组求解逆序数
从头到尾读入这些数,每读入一个数就更新树状数组,
查看它前面比它小的已出现过的有多少个数sum,
然后用当前位置减去该sum,
就可以得到当前数导致的逆序对数了。
把所有的加起来就是总的逆序对数。
code:
#include<queue>
#include<set>
#include<cstdio>
#include <iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define max_v 500005
int n;
struct node
{
int v;
int pos;
} p[max_v];
int c[max_v];
int re[max_v];
int maxx;
int lowbit(int x)
{
return x&(-x);
}
void update(int x,int d)
{
while(x<=n)
{
c[x]+=d;
x+=lowbit(x);
}
}
int getsum(int x)
{
int res=;
while(x>)
{
res+=c[x];
x-=lowbit(x);
}
return res;
}
bool cmp(node a,node b)
{
return a.v<b.v;
}
int main()
{
while(~scanf("%d",&n))
{
if(n==)
break;
memset(c,,sizeof(c));
for(int i=;i<=n;i++)
{
scanf("%d",&p[i].v);
p[i].pos=i;
} sort(p+,p++n,cmp);
for(int i=;i<=n;i++)
{
re[p[i].pos]=i;//离散化
} long long ans=;
for(int i=;i<=n;i++)
{
update(re[i],);
ans+=(i-getsum(re[i]));//当前位置减去前面比它小的数的个数之和就是答案
}
printf("%lld\n",ans);
}
return ;
}
/*
题目意思:
对于给定的无序数组
求除经过多少次相邻的元素交换之后,可以使得数组升序
就是求一个数列的逆序数 从头到尾读入这些数,每读入一个数就更新树状数组,
查看它前面比它小的已出现过的有多少个数sum,
然后用当前位置减去该sum,
就可以得到当前数导致的逆序对数了。
把所有的加起来就是总的逆序对数。
*/

感觉自己的树状数组这样写真的是傻的一批,离散化写的麻烦了,照着别人的离散化写的!

现在明白了离散化是什么东西:就是数据范围压缩!!!

贴一个自己离散化的代码

#include<queue>
#include<set>
#include<cstdio>
#include <iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define max_v 500005
int n;
struct node
{
int v;
int pos;
} p[max_v];
int c[max_v];
int re[max_v];
int maxx;
int lowbit(int x)
{
return x&(-x);
}
void update(int x,int d)
{
while(x<max_v)
{
c[x]+=d;
x+=lowbit(x);
}
}
int getsum(int x)//返回1到x中小与等于x的数量
{
int res=;
while(x>)
{
res+=c[x];
x-=lowbit(x);
}
return res;
}
bool cmp(node a,node b)
{
if(a.v!=b.v)
return a.v<b.v;
else
return a.pos<b.pos;
}
int main()
{
while(~scanf("%d",&n))
{
if(n==)
break;
memset(c,,sizeof(c));
for(int i=;i<=n;i++)
{
scanf("%d",&p[i].v);
p[i].pos=i;
} sort(p+,p++n,cmp); long long ans=;
for(int i=;i<=n;i++)
{
ans+=(i-getsum(p[i].pos)-);//先找再更新,避免getsum的时候算上自己
update(p[i].pos,);
}
printf("%lld\n",ans);
}
return ;
}

方法二:归并排序求解逆序数

在归并排序的过程中,比较关键的是通过递归,
将两个已经排好序的数组合并,
此时,若a[i] > a[j],则i到m之间的数都大于a[j],
合并时a[j]插到了a[i]之前,此时也就产生的m-i+1个逆序数,
而小于等于的情况并不会产生。

code:

#include<stdio.h>
#include<memory>
#define max_v 500005
typedef long long LL;
LL a[max_v];
LL temp[max_v];
LL ans;
void mer(int s,int m,int t)
{
int i=s;
int j=m+;
int k=s;
while(i<=m&&j<=t)
{
if(a[i]<=a[j])
{
temp[k++]=a[i++];
}else
{
ans+=j-k;//求逆序数
temp[k++]=a[j++];
}
}
while(i<=m)
{
temp[k++]=a[i++];
}
while(j<=t)
{
temp[k++]=a[j++];
}
}
void cop(int s,int t)
{
for(int i=s;i<=t;i++)
a[i]=temp[i];
}
int megsort(int s,int t)
{
if(s<t)
{
int m=(s+t)/;
megsort(s,m);
megsort(m+,t);
mer(s,m,t);
cop(s,t);
}
}
int main()
{
int n;
while(~scanf("%d",&n))
{
if(n==)
break;
ans=;
for(int i=;i<n;i++)
scanf("%lld",&a[i]);
megsort(,n-);
printf("%lld\n",ans);
}
return ;
}
/*
题目意思:
对于给定的无序数组
求除经过多少次相邻的元素交换之后,可以使得数组升序
就是求一个数列的逆序数 在归并排序的过程中,比较关键的是通过递归,
将两个已经排好序的数组合并,
此时,若a[i] > a[j],则i到m之间的数都大于a[j],
合并时a[j]插到了a[i]之前,此时也就产生的m-i+1个逆序数,
而小于等于的情况并不会产生。
*/
 

POJ 2299 Ultra-QuickSort 求逆序数 (归并或者数状数组)此题为树状数组入门题!!!的更多相关文章

  1. poj 2299 Ultra-QuickSort (归并排序 求逆序数)

    题目:http://poj.org/problem?id=2299 这个题目实际就是求逆序数,注意 long long 上白书上的模板 #include <iostream> #inclu ...

  2. poj 2299 Ultra-QuickSort 归并排序求逆序数对

    题目链接: http://poj.org/problem?id=2299 题目描述: 给一个有n(n<=500000)个数的杂乱序列,问:如果用冒泡排序,把这n个数排成升序,需要交换几次? 解题 ...

  3. Poj 2299 Ultra-QuickSort(归并排序求逆序数)

    一.题意 给定数组,求交换几次相邻元素能是数组有序. 二.题解 刚开始以为是水题,心想这不就是简单的冒泡排序么.但是毫无疑问地超时了,因为题目中n<500000,而冒泡排序总的平均时间复杂度为, ...

  4. nyoj 117 求逆序数 (归并(merge)排序)

    求逆序数 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中 ...

  5. poj 2299 Ultra-QuickSort(求逆序对)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 52778   Accepted: 19348 ...

  6. POJ训练计划2299_Ultra-QuickSort(归并排序求逆序数)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 39279   Accepted: 14163 ...

  7. POJ 2299 Ultra-QuickSort 归并排序、二叉排序树,求逆序数

    题目链接: http://poj.org/problem?id=2299 题意就是求冒泡排序的交换次数,显然直接冒泡会超时,所以需要高效的方法求逆序数. 利用归并排序求解,内存和耗时都比较少, 但是有 ...

  8. poj 2299 Ultra-QuickSort(树状数组求逆序数+离散化)

    题目链接:http://poj.org/problem?id=2299 Description In this problem, you have to analyze a particular so ...

  9. poj 2299 Ultra-QuickSort(树状数组求逆序数)

    链接:http://poj.org/problem?id=2299 题意:给出n个数,求将这n个数从小到大排序,求使用快排的需要交换的次数. 分析:由快排的性质很容易发现,只需要求每个数的逆序数累加起 ...

随机推荐

  1. uwsgi/uWSGI/WSGI简介

    参考文章 uWSGI是一个Web服务器,它实现了WSGI协议.uwsgi.http等协议.Nginx中HttpUwsgiModule的作用是与uWSGI服务器进行交换.z WSGI是一种Web服务器网 ...

  2. webpack打包踩坑之TypeError: Cannot read property 'bindings' of null

    file loader介绍:https://www.webpackjs.com/loaders/file-loader/ babel loader介绍:https://webpack.js.org/l ...

  3. java 自定义 LRU(最近最少使用)策略 实现 缓存机制

    1. java提供了一个简单的方式实现LRU:  LinkedHashMap   2. 自定义实现 LRU至少需要两个主要操作: 添加(add)和搜索(search) public class LRU ...

  4. MathQuill.js

    MathQuill.js通过html.css.javascript实现数学公式 <p>Type math here: <span id="math-field"& ...

  5. 【vue入门】日志demo,增删改查的练习(无vuex版本)

    安装 1. 确定电脑已装node和npm 出现版本号则说明电脑已经安装好node和npm2. 创建一个基于webpack的项目   3. 在项目里安装依赖 4. 运行 配置路由为了动态渲染各个页面的组 ...

  6. GPU 编程语言 Harlan

    Harlan 是一个声明式的.GPU 领域特定的编程语言.目前主要是用于技术实现和优化的测试用途.该语言很小,用于简化浏览新的分析器和优化. 支持的操作系统: Mac OS X 10.6 (Snow ...

  7. PHP计算近1年的所有月份

    $z = date('Y-m'); $a = date('Y-m', strtotime('-12 months')); $begin = new DateTime($a); $end = new D ...

  8. UX基础 - OmniGraffle新手指南

    原文地址:http://beforweb.com/node/202,大半夜找到,作为使用手册 我发现一事儿,就是最近这些年,每到入职一个新公司的时候,听得东西往往会比多数时候听得更重更金属些,此时以S ...

  9. 我的MBTI小测试

    今天做了自己的MBTI测试,选了93道题版本的,测试结果是ESFP表演者型——有我在就有笑声.这个测试很有趣,我也觉得很神奇. 一.我的MBTI图形 二.才储分析:我的性格类型倾向为“ ESFP ”( ...

  10. php 函数func_get_args()、func_get_arg()与func_num_args()之间的区别

    php经常会有一些看似相近的函数,然而区别很大.[func_get_arg(),func_get_args(),func_num_args()]的区别,我们先看一下,下面的实例代码 从上面的结果中我们 ...