Corn Fields
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 16909 Accepted: 8939

Description

Farmer John has purchased a lush new rectangular pasture composed of
M by
N (1 ≤
M ≤ 12; 1 ≤
N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows
that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John
determine the number of ways he can choose the squares to plant.

Input

Line 1: Two space-separated integers:
M and
N


Lines 2..M+1: Line
i+1 describes row
i of the pasture with
N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)

Output

Line 1: One integer: the number of ways that FJ can choose the squares modulo 100,000,000.

Sample Input

2 3
1 1 1
0 1 0

Sample Output

9

Hint

Number the squares as follows:

1 2 3
  4  

There are four ways to plant only on one squares (1, 2, 3, or 4), three ways to plant on two squares (13, 14, or 34), 1 way to plant on three squares (134), and one way to plant on no squares. 4+3+1+1=9.

Source

[Submit]  
[Go Back]   [Status]  
[Discuss]





设f[i][s]表示第i行s状态下的方案数,则对于所有i - 1行与s不冲突的方案都可以转移

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 20,maxm = 1 << 12,INF = 1000000000,P = 100000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
} int f[maxn][maxm],N,M,le[maxm];
bool ill[maxm]; int main()
{
N = read();
M = read();
int maxv = (1 << M) - 1;
for (int i = 1; i <= N; i++){
for (int j = 1; j <= M; j++)
le[i] = (le[i] << 1) + read();
}
for (int s = 0; s <= maxv; s++){
bool sig = false; int t = s;
while (t){
if ((t & 1)&& sig) {ill[s] = true; break;}
else if (t & 1) sig = true;
else sig = false;
t >>= 1;
}
}
for (int s = 0; s <= maxv; s++){
if (!ill[s] && (s | le[1]) == le[1])
f[1][s] = 1;
}
for (int i = 2; i <= N; i++)
for (int e = 0; e <= maxv; e++){
if (ill[e] || (e | le[i]) != le[i]) continue;
for(int s = 0; s <= maxv; s++){
if (e & s) continue;
f[i][e] = (f[i][e] + f[i - 1][s]) % P;
}
}
int ans = 0;
for (int i = 0; i <= maxv; i++) ans = (ans + f[N][i]) % P;
cout<<ans<<endl;
return 0;
}

POJ P3254 Corn fields 【状压dp】的更多相关文章

  1. POJ 3254 - Corn Fields - [状压DP水题]

    题目链接:http://poj.org/problem?id=3254 Time Limit: 2000MS Memory Limit: 65536K Description Farmer John ...

  2. POJ 3254 Corn Fields (状压dp)

    题目链接:http://poj.org/problem?id=3254 给你n*m的菜地,其中1是可以种菜的,而菜与菜之间不能相邻.问有多少种情况. 状压dp入门题,将可以种菜的状态用一个数的二进制表 ...

  3. POJ 1684 Corn Fields(状压dp)

    描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ ...

  4. [ An Ac a Day ^_^ ] POJ 3254 Corn Fields 状压dp

    题意: 有一块n*m的土地 0代表不肥沃不可以放牛 1代表肥沃可以放牛 且相邻的草地不能同时放牛 问最多有多少种放牛的方法并对1e8取模 思路: 典型的状压dp 能状态压缩 能状态转移 能状态压缩的题 ...

  5. Poj - 3254 Corn Fields (状压DP)(入门)

    题目链接:https://vjudge.net/contest/224636#problem/G 转载于:https://blog.csdn.net/harrypoirot/article/detai ...

  6. poj 3254 Corn Fields 状压dp入门

    题目链接 题意 在\(M\times N\)的\(0,1\)格子上放东西,只有标记为\(1\)的格子可以放东西,且相邻的格子不能同时放东西.问有多少种放法. 思路 参考:swallowblank. \ ...

  7. 【POJ3254】Corn Fields 状压DP第一次

    !!!!!!! 第一次学状压DP,其实就是运用位运算来实现一些比较,挺神奇的.. 为什么要发“!!!”因为!x&y和!(x&y)..感受一下.. #include <iostre ...

  8. P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp

    正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...

  9. [USACO06NOV]玉米田Corn Fields 状压DP

    题面: 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上美味的草,供他的 ...

  10. [USACO06NOV]玉米田Corn Fields (状压$dp$)

    题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 块草皮,且最后一位状态为 \(k\) . 同时多记录一个每一列中的 ...

随机推荐

  1. pg执行计划

  2. 180726-InfluxDB基本概念小结

    InfluxDB基本概念小结 InfluxDB作为时序数据库,与传统的关系型数据库相比而言,还是有一些区别的,下面尽量以简单明了的方式介绍下相关的术语概念 I. 基本概念 mysql influxdb ...

  3. RyuBook1.0案例三:REST Linkage

    REST Linkage 该小结主要介绍如何添加一个REST Link 函数 RYU本身提供了一个类似WSGI的web服务器功能.借助这个功能,我们可以创建一个REST API. 基于创建的REST ...

  4. Zabbix部署-LNMP环境

    原文发表于cu:2016-05-05 参考文档: LNMP安装:http://www.osyunwei.com/archives/7891.html 一.环境 Server:CentOS-7-x86_ ...

  5. Educational Codeforces Round 63 D. Beautiful Array

    D. Beautiful Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  6. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

  7. C# 未在本地计算机上注册“Microsoft.Jet.OLEDB.4.0”提供程序。

    在菜单 “项目”的最下面 工程属性 菜单,选择“生成”选项卡,将目标平台由“Amy CPU”或者“*64”改成“*86”.

  8. 整理sql server数据类型

    我们在平常开发过程中,在设计数据的时候,经常碰到数据类型选择的问题,为了更快,更合适地选择正确的数据类型,所以在这里做个总结. 分类 sql server 数据类型 c# 数据类型 描述 应用场景 字 ...

  9. 初识 es6之 const

    const声明一个只读的常量.一旦声明,常量的值就不能改变. 例子: const a=12; a=2;//报错,const 声明的是常量,不能改 const声明的变量不得改变值,这意味着,const一 ...

  10. 软工实践团队展示——WorldElite

    软工实践团队展示--WorldElite 本次作业链接 团队成员 031602636许舒玲(组长) 031602237吴杰婷 031602634吴志鸿 081600107傅滨 031602220雷博浩 ...