菜菜的喵喵题~

  化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能。

  举个矩阵的例子

  1 3 9 27
  2 6 18 54
  4 12 36 108

  这样最多11列,最多17行,那么方案数就可以用状压了。 

  但是我们会发现,矩阵里没有5,所以我们要把5作为左上角再算一次答案,最后把所有矩阵的答案用乘法原理乘起来就好

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define MOD(x) ((x)>=mod?(x)-mod:(x))
using namespace std;
const int maxn=,mod=1e9+;
int n,ans,cnth;
int f[][<<],cntl[];
bool v[maxn];
inline void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
inline int find(int x)
{
cnth=;memset(cntl,,sizeof(cntl));
for(int i=,fir=x;fir<=n;i++,fir*=,cnth++)
for(int j=,sec=fir;sec<=n;j++,sec*=,cntl[i]++)v[sec]=;
f[][]=;
for(int i=;i<=cnth;i++)for(int j=;j<=(<<cntl[])-;j++)f[i][j]=;
for(int i=;i<=cnth;i++)
for(int j=;j<(<<cntl[i]);j++)
if(!(j&(j>>)))
for(int k=;k<(<<cntl[i-]);k++)
if(!(k&(k>>)))if(!(j&k))f[i][j]=MOD(f[i][j]+f[i-][k]);
int sum=;
for(int i=;i<=(<<cntl[cnth])-;i++)sum=MOD(sum+f[cnth][i]);
return sum;
}
int main()
{
read(n);ans=;
for(int i=;i<=n;i++)
if(!v[i])ans=1ll*ans*find(i)%mod;
printf("%d\n",ans);
}

bzoj2734:[HNOI2012]集合选数(状压DP)的更多相关文章

  1. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  2. 【BZOJ-2734】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  3. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  4. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  5. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

  6. $HNOI2012\ $ 集合选数 状压$dp$

    \(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...

  7. bzoj 2734 [HNOI2012]集合选数 状压DP+预处理

    这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...

  8. 【BZOJ-2732】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  9. BZOJ2734 HNOI2012集合选数(状压dp)

    完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...

  10. [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)

    Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...

随机推荐

  1. selenium 各种很奇葩的异常

    问题1:使用selenium3+java的脚本模拟登陆时,总是提示用户名,密码错误 解决方法:1 在执行输入用户名和密码的代码之前,加上driver.navigate().refresh(); QQ群 ...

  2. Unity Lighting - Light Probes 光照探针(十)

      Light Probes 光照探针 Only static objects are considered by Unity’s Baked or Precomputed Realtime GI s ...

  3. 《疯狂前端开发讲义jQuery+Angular+Bootstrap前端开发实践》学习笔记

    <疯狂前端开发讲义jQuery+Angular+Bootstrap前端开发实践>学习笔记 二〇一九年二月十三日星期三2时28分54秒 前提:本书适合有初步HTML.CSS.JavaScri ...

  4. 使用Scrapy构建一个网络爬虫

    记得n年前项目需要一个灵活的爬虫工具,就组织了一个小团队用Java实现了一个爬虫框架,可以根据目标网站的结构.地址和需要的内容,做简单的配置开发,即可实现特定网站的爬虫功能.因为要考虑到各种特殊情形, ...

  5. 2.airflow参数简介

    比较重要的参数: 参数 默认值 说明 airflow_home /home/airflow/airflow01 airflow home,由环境变量$AIRFLOW_HOME决定 dags_folde ...

  6. react native基础与入门

    react native基础与入门 一.react native 的优点 1.跨平台(一才两用) 2.低投入高回报 (开发成本低.代码复用率高) 3.性能高:拥有独立的js渲染引擎,比传统的h5+ w ...

  7. 从一个app开始学iOS

    在大学上了4年学,老师一直给灌输的思想就是,从细微处着手最后看到整体.举个网站的例子.第一个学期老师安排一门课java语言,期末考试就是考试java语言的知识.第二学期java web,第一次课配置j ...

  8. 周总结web未完成的代码

    <html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Con ...

  9. bat获取当前日期的前一天

    批处理做这样的事情很麻烦,你可以用cscript来实现,比如把下面的内容保存为a.js文件:var d=new Date();d.setTime(d.getTime()-24*3600*1000);v ...

  10. Struts2:<s:action>的使用

    <s:action name=”actionName” namespace=”/” executeResult=”true”> <s:action>可以在jsp中直接调用act ...