博弈论(Game Theory) - 04 - 纳什均衡
博弈论(Game Theory) - 04 - 纳什均衡
开始
纳什均衡和最大最小定理是博弈论的两大基石。
博弈不仅仅是对抗,也包括合作和迁就,纳什均衡能够解决这些问题,提供了在数学上一个完美的理论。
纳什均衡的中心思想是主动选择一个对大家都有利的战略,迫使其他玩家选择相同的战略组合。
纳什均衡
示例
这里,我们使用“战略式”表述,如下:
B | ||||
---|---|---|---|---|
L | M | R | ||
A | U | 3,2 | 4,7 | 5,1 |
H | 6,1 | 2,8 | 1,1 | |
D | 3,7 | 8,9 | 10, 4 |
纯战略纳什均衡的划线法
注:我用红色代替了划线。
在玩家A的每一个战略中,找到玩家B的最大支付,并在其下面划线。
比如:玩家A的战略U中,玩家B的最大支付是7。
然后
在玩家B的每一个战略中,找到玩家A的最大支付,并在其下面划线。
最后,都有划线的战略组合就是纯战略纳什均衡。
概念
- 纳什均衡
对于n人战略式表述博弈\(G = \{ S_1, \cdots, S_n; u_1, \cdots, u_n\}\),若战略组合\(s^*=(s_1^*, \cdots, s_n^*)\)满足如下条件,则称\(s^*\)是一个纳什均衡:
\(u_1(s_i^*, s_{-1}^*) \ge u_1(s_i, s_{-1}^*) \ \forall s_i \in S_i, i-1, \cdots, n\)
或者用另一种表达方式:当且仅当\(s_i^*\)是下述最大化问题的解时,\(s^*\)是一个纳什均衡
\(s_i^* = \underset{s_i}{argmax} \ u_i(s_1^*, \cdots, s_{i-1}^*, s_i, s_{i+1}^*, \cdots, s_n^*), \ i=1, \cdots, n; s_i \in S_i\)
纳什均衡的含义是说:当局中人在某一选定的战略组合下都没有积极性偏离各自已选定的战略时,该战略组合就构成一个纳什均衡。
纳什均衡对应的战略组合是:战略组合的每个特定玩家策略都是(当其他玩家做出这个战略组合对应的选择时)其最优解。
参考
- 博弈论与经济模型, 蒲勇健。
博弈论(Game Theory) - 04 - 纳什均衡的更多相关文章
- 博弈论(Game Theory) - 04 - 纳什均衡
博弈论(Game Theory) - 04 - 纳什均衡 开始 纳什均衡和最大最小定理是博弈论的两大基石. 博弈不仅仅是对抗,也包括合作和迁就,纳什均衡能够解决这些问题,提供了在数学上一个完美的理论. ...
- 博弈论(Game Theory) - 01 - 前传之占优战略均衡
博弈论(Game Theory) - 01 - 前传之占优战略均衡 开始 我们现在准备攀爬博弈论的几座高峰. 我们先看看在纳什均衡产生之前,博弈论的发展情况. 我们的第一座高峰是占优战略均衡. 囚徒困 ...
- 博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡
博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡 开始 "重复剔除劣战略的严格占优战略均衡"(iterated dominance equil ...
- 博弈论(Game Theory) - 03 - 前传之最大最小均衡
博弈论(Game Theory) - 03 - 前传之最大最小均衡 开始 最大最小均衡是由人冯·诺依曼和摩根斯坦提出.冯·诺依曼和摩根斯坦也被认为是博弈论的创始人. 冯·诺依曼提出的"最大最 ...
- hihocoder 1154 Spring Outing
传送门 #1154 : Spring Outing 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 You class are planning for a spring ...
- 竞价拍卖理论的介绍(RTB模型中使用第二竞价模型,为的是纳什平衡,保护所有多方利益)
英式拍卖 是最普通的拍卖方式,其形式是拍卖过程中,竞价按阶梯,从低到高,依次递增.最终由出价最高者获得拍卖物品(竞买人变成买受人). The first price auction: a form o ...
- 第18月第22天 机器学习first
1.网易公开课 机器学习 http://open.163.com/special/opencourse/machinelearning.html https://github.com/search ...
- 清华EMBA课程系列思考之六 -- 比較文明视野下的中华领导智慧、企业管理与经济解析
告别马年的最后一缕阳光,踏着猴年的钟声,度过了温馨的春节,已然开启了新学期的第一堂课.看题目其貌不扬,但一旦进入课堂,已然聚精会神.唯恐掉队,就请大家跟我一起进入四天的心路修炼旅程,開始我们的新一期思 ...
- 游戏引擎架构 (Jason Gregory 著)
第一部分 基础 第1章 导论 (已看) 第2章 专业工具 (已看) 第3章 游戏软件工程基础 (已看) 第4章 游戏所需的三维数学 (已看) 第二部分 低阶引擎系统 第5章 游戏支持系统 (已看) 第 ...
随机推荐
- 移动端h5列表页上拉加载更多
背景 上星期公司要求做一个回收书籍的h5给安卓用,里面有一个功能是回收记录列表.设计师那边出的稿子是没有要求分页或者是上拉刷新的,但是众所周知,列表页数据很多的情况下,h5加载是很慢的.所以我一开始是 ...
- elk6.*版本搭建连接 比较好一点的
https://www.cnblogs.com/harvey2017/p/8922164.html
- php版本跟扩展模块版本不兼容问题
安装redis扩展后查看时候出现了这样报错: [root@localhost phpredis-develop]# php -m | grep redisPHP Warning: PHP Startu ...
- java alibaba fastJson 遍历数组json
import java.util.*; import com.alibaba.fastjson.*; public class Test { public static void main(Strin ...
- 深入理解Java虚拟机(一) 运行时数据区划分
前言:从我学Java的第一天开始,我的大学老师就告诉我 Java语言相比C.C++的语言有一个非常强大的功能,那就是自动内存管理:我们用Java编码时不需要申请或释放内存等,这些工作全部交由我们的Ja ...
- Python 学习笔记(十三)Python函数(一)
函数基础 函数:函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.Python提供了许多内建函数,比如print().可以自己创建函数,这 ...
- .net core 实践笔记(二)--EF连接Azure Sql
** 温馨提示:如需转载本文,请注明内容出处.** 本文链接:https://www.cnblogs.com/grom/p/9902098.html 笔者使用了常见的三层架构,Api展示层注入了Swa ...
- DataGuard快照(snapshot)数据库
在Dataguard中,可以将standby备库切换为snapshot快照数据库,在切换为snapshot数据库后,备库将置于可读写的模式.可用于模拟业务功能测试.在使用完成之后,可以将快照数据库切换 ...
- Swift基础学习笔记 一
之前学习过一段时间swift,由于目前开发的项目还是用的OC,一段时间不看swift又基本忘干净了,好记性不如烂笔头,还是用博客记录一下自己学的东西吧. 基本数据类型: 1.常量(let)和变量(va ...
- Web | JavaScript的提升机制
作用对象: 函数和变量的声明. 作用效果: 会将其声明提升到其所在的作用域的最顶端.函数会优先于变量的声明. //函数的提升优于变量的提升 test(); var a=2; function test ...