博弈论(Game Theory) - 04 - 纳什均衡

开始

纳什均衡和最大最小定理是博弈论的两大基石。
博弈不仅仅是对抗,也包括合作和迁就,纳什均衡能够解决这些问题,提供了在数学上一个完美的理论。
纳什均衡的中心思想是主动选择一个对大家都有利的战略,迫使其他玩家选择相同的战略组合

纳什均衡

示例

这里,我们使用“战略式”表述,如下:

B
L M R
A U 3,2 4,7 5,1
H 6,1 2,8 1,1
D 3,7 8,9 10, 4

纯战略纳什均衡的划线法

注:我用红色代替了划线。
在玩家A的每一个战略中,找到玩家B的最大支付,并在其下面划线。
比如:玩家A的战略U中,玩家B的最大支付是7。
然后
在玩家B的每一个战略中,找到玩家A的最大支付,并在其下面划线。
最后,都有划线的战略组合就是纯战略纳什均衡。

概念

  • 纳什均衡
    对于n人战略式表述博弈\(G = \{ S_1, \cdots, S_n; u_1, \cdots, u_n\}\),若战略组合\(s^*=(s_1^*, \cdots, s_n^*)\)满足如下条件,则称\(s^*\)是一个纳什均衡:
    \(u_1(s_i^*, s_{-1}^*) \ge u_1(s_i, s_{-1}^*) \ \forall s_i \in S_i, i-1, \cdots, n\)
    或者用另一种表达方式:当且仅当\(s_i^*\)是下述最大化问题的解时,\(s^*\)是一个纳什均衡
    \(s_i^* = \underset{s_i}{argmax} \ u_i(s_1^*, \cdots, s_{i-1}^*, s_i, s_{i+1}^*, \cdots, s_n^*), \ i=1, \cdots, n; s_i \in S_i\)
    纳什均衡的含义是说:当局中人在某一选定的战略组合下都没有积极性偏离各自已选定的战略时,该战略组合就构成一个纳什均衡。
    纳什均衡对应的战略组合是:战略组合的每个特定玩家策略都是(当其他玩家做出这个战略组合对应的选择时)其最优解

参考

  • 博弈论与经济模型, 蒲勇健。

博弈论(Game Theory) - 04 - 纳什均衡的更多相关文章

  1. 博弈论(Game Theory) - 04 - 纳什均衡

    博弈论(Game Theory) - 04 - 纳什均衡 开始 纳什均衡和最大最小定理是博弈论的两大基石. 博弈不仅仅是对抗,也包括合作和迁就,纳什均衡能够解决这些问题,提供了在数学上一个完美的理论. ...

  2. 博弈论(Game Theory) - 01 - 前传之占优战略均衡

    博弈论(Game Theory) - 01 - 前传之占优战略均衡 开始 我们现在准备攀爬博弈论的几座高峰. 我们先看看在纳什均衡产生之前,博弈论的发展情况. 我们的第一座高峰是占优战略均衡. 囚徒困 ...

  3. 博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡

    博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡 开始 "重复剔除劣战略的严格占优战略均衡"(iterated dominance equil ...

  4. 博弈论(Game Theory) - 03 - 前传之最大最小均衡

    博弈论(Game Theory) - 03 - 前传之最大最小均衡 开始 最大最小均衡是由人冯·诺依曼和摩根斯坦提出.冯·诺依曼和摩根斯坦也被认为是博弈论的创始人. 冯·诺依曼提出的"最大最 ...

  5. hihocoder 1154 Spring Outing

    传送门 #1154 : Spring Outing 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 You class are planning for a spring ...

  6. 竞价拍卖理论的介绍(RTB模型中使用第二竞价模型,为的是纳什平衡,保护所有多方利益)

    英式拍卖 是最普通的拍卖方式,其形式是拍卖过程中,竞价按阶梯,从低到高,依次递增.最终由出价最高者获得拍卖物品(竞买人变成买受人). The first price auction: a form o ...

  7. 第18月第22天 机器学习first

    1.网易公开课 机器学习   http://open.163.com/special/opencourse/machinelearning.html https://github.com/search ...

  8. 清华EMBA课程系列思考之六 -- 比較文明视野下的中华领导智慧、企业管理与经济解析

    告别马年的最后一缕阳光,踏着猴年的钟声,度过了温馨的春节,已然开启了新学期的第一堂课.看题目其貌不扬,但一旦进入课堂,已然聚精会神.唯恐掉队,就请大家跟我一起进入四天的心路修炼旅程,開始我们的新一期思 ...

  9. 游戏引擎架构 (Jason Gregory 著)

    第一部分 基础 第1章 导论 (已看) 第2章 专业工具 (已看) 第3章 游戏软件工程基础 (已看) 第4章 游戏所需的三维数学 (已看) 第二部分 低阶引擎系统 第5章 游戏支持系统 (已看) 第 ...

随机推荐

  1. pyenv 配置python虚拟环境

    安装pyenv环境 yum -y install git yum install gcc make patch gdbm-devel openssl-devel sqlite-devel readli ...

  2. 更有效率的使用Visual Studio

    工欲善其事,必先利其器.虽然说Vim和Emacs是神器,但是对于使用Visual Studio的程序员来说,我们也可以通过一些快捷键和潜在的一些功能实现脱离鼠标写代码,提高工作效率,像使用Vim一样使 ...

  3. 【Mybatis】参数处理

    单个参数:mybatis不会做特殊处理, #{参数名/任意名}:取出参数值. 多个参数:mybatis会做特殊处理. 多个参数会被封装成 一个map, key:param1...paramN,或者参数 ...

  4. PAT——1040. 有几个PAT

    字符串APPAPT中包含了两个单词“PAT”,其中第一个PAT是第2位(P),第4位(A),第6位(T):第二个PAT是第3位(P),第4位(A),第6位(T). 现给定字符串,问一共可以形成多少个P ...

  5. PAT——1030. 完美数列

    给定一个正整数数列,和正整数p,设这个数列中的最大值是M,最小值是m,如果M <= m * p,则称这个数列是完美数列. 现在给定参数p和一些正整数,请你从中选择尽可能多的数构成一个完美数列. ...

  6. font-failmly字体对应

  7. 如何通过github上传项目并在readme.md中展示图片二维码

    将本地项目上传至github   第一步:git init (创建仓库)   第二步:git add README.md (添加项目)git add *   第三步:git commit -m &qu ...

  8. Linux 判断系统任务是否正在运行

    #!/bin/bash if ps -ef|grep "php index"|egrep -v grep >/dev/null then >& >> ...

  9. 浏览器窗口输入网址后发生的一段事情(http完整请求)

    1.DNS查询得到IP 输入的是域名,需要进行dns解析成IP,大致流程: 如果浏览器有缓存,直接使用浏览器缓存,否则使用本机缓存,再没有的话就是用host 如果本地没有,就向dns域名服务器查询(当 ...

  10. pycharm社区版新建django文件不友好操作

    一.cmd操作 1.django-admin startproject (新建project名称) 2.在pycharm打开project,运行终端输入:python manage.py starta ...