QuantLib 金融计算——收益率曲线之构建曲线(1)
如果未做特别说明,文中的程序都是 Python3 代码。
QuantLib 金融计算——收益率曲线之构建曲线(1)
理论和实践上有多种方法可以构建与市场一致的收益率曲线,背后的方法论取决于市场上的可获得金融工具的流动性。在构建收益率曲线时有两个选项必须选定好:插值方法和所选的金融工具或数据。
quantlib-python 允许构建下列两大类收益率曲线:
- 第一类,根据数值和对应日期构建:
DiscountCurve
,根据贴现因子构建- 若干
*ZeroCurve
型的收益率曲线,根据债券零息收益率构建(前缀表示具体的构建方法) ForwardCurve
,根据远期收益率构建
- 第二类,根据若干固定收益类对象(如
FixedRateBond
)构建:FittedBondDiscountCurve
,根据若干债券的价格构建- 若干
Piecewise**
型的收益率曲线,根据若干不同类型金融工具(存款收益率、收益率远期合约和互换等等)的报价分段构建(后缀表示具体的构建方法和曲线类型)
本文介绍第一种。
载入 QuantLib:
import QuantLib as ql
print(ql.__version__)
1.12
YieldTermStructure
事实上,所有上述类都派生自基类 YieldTermStructure
,该基类实现了一些常用的功能。例如,实现了返回基准日期、天数计算规则、日历的函数,以及返回收益率的最小或最大日期的函数。
YieldTermStructure
常用的成员函数:
discount(d, extrapolate = False)
:浮点数,d
是Date
对象,extrapolate
是布尔型。返回贴现因子大小。zeroRate(d, resultDayCounter, comp, freq = Annual, extrapolate = False)
:InterestRate
,d
是Date
对象,resultDayCounter
是DayCounter
对象,comp
和freq
是预置整数,extrapolate
是布尔型。返回等价的零息收益率对象。forwardRate(d1, d2, dc, comp, freq = Annual, extrapolate = false)
:InterestRate
,d1
和d2
是Date
对象,resultDayCounter
是DayCounter
对象,comp
和freq
是 quantlib-python 预置整数(表示付息方式和频率),extrapolate
是布尔型。返回d1
和d2
之间的远期收益率对象。
DiscountCurve
首先介绍 DiscountCurve
。这种构造方法适用于给定的一组贴现因子,并为其分配给相应的期限。
DiscountCurve
对象的构造
构造函数具有以下实现
DiscountCurve(dates,
dfs,
dayCounter,
cal)
这些变量的类型和解释如下:
dates
:日期序列,贴现因子对应的到期日。注意:第一个日期必须是贴现曲线的基准日期,例如贴现因子是 1.0 的日期。dfs
:浮点数序列,贴现因子dayCounter
:DayCounter
对象,天数计算规则cal
:Calendar
对象,日历表
DiscountCurve
常用的成员函数均继承自基类 YieldTermStructure
。
在下面的例子中,根据历史上某天路透社公布的贴现因子报价构建收益率曲线。在收益率曲线构建之后,求给定日期的等价零息收益率、贴现因子和远期收益率。
EUR | Yield | Discount |
---|---|---|
TN | 0.3148 | 0.9999656 |
1w | 0.3083 | 0.9999072 |
1M | 0.4225 | 0.9996074 |
2M | 0.5443 | 0.9990040 |
3M | 0.7242 | 0.9981237 |
6M | 0.9614 | 0.9951358 |
9M | 0.9372 | 0.9929456 |
1Y | 1.0006 | 0.9899849 |
1Y3M | 1.1120 | 0.9861596 |
1Y6M | 1.2457 | 0.9815178 |
1Y9M | 1.4358 | 0.9752363 |
2Y | 1.6263 | 0.9680804 |
例子 1:
def testingYields1():
dates = []
dfs = []
cal = ql.UnitedStates()
today = ql.Date(11, ql.September, 2009)
libor = ql.EURLibor1M()
dc = libor.dayCounter()
settlementDays = 2
settlement = cal.advance(
today, settlementDays, ql.Days)
dates.append(settlement)
dates.append(settlement + ql.Period(1, ql.Days))
dates.append(settlement + ql.Period(1, ql.Weeks))
dates.append(settlement + ql.Period(1, ql.Months))
dates.append(settlement + ql.Period(2, ql.Months))
dates.append(settlement + ql.Period(3, ql.Months))
dates.append(settlement + ql.Period(6, ql.Months))
dates.append(settlement + ql.Period(9, ql.Months))
dates.append(settlement + ql.Period(1, ql.Years))
dates.append(settlement + ql.Period(1, ql.Years) + ql.Period(3, ql.Months))
dates.append(settlement + ql.Period(1, ql.Years) + ql.Period(6, ql.Months))
dates.append(settlement + ql.Period(1, ql.Years) + ql.Period(9, ql.Months))
dates.append(settlement + ql.Period(2, ql.Years))
dfs.append(1.0)
dfs.append(0.9999656)
dfs.append(0.9999072)
dfs.append(0.9996074)
dfs.append(0.9990040)
dfs.append(0.9981237)
dfs.append(0.9951358)
dfs.append(0.9929456)
dfs.append(0.9899849)
dfs.append(0.9861596)
dfs.append(0.9815178)
dfs.append(0.9752363)
dfs.append(0.9680804)
tmpDate1 = settlement + ql.Period(1, ql.Years) + ql.Period(3, ql.Months)
tmpDate2 = tmpDate1 + ql.Period(3, ql.Months)
curve = ql.DiscountCurve(
dates, dfs, dc, cal)
equ_zero = curve.zeroRate(
tmpDate1, dc, ql.Simple, ql.Annual)
print(
"等价 Zero Rate:",
equ_zero)
print(
"等价 Zero Rate 计算的贴现因子:",
equ_zero.discountFactor(
settlement, tmpDate1))
print(
"真实 Discount Factor:",
curve.discount(tmpDate1))
print(
"1Y3M-1Y6M 间的远期收益率 Fwd Rate:",
curve.forwardRate(
tmpDate1, tmpDate2, dc, ql.Continuous))
testingYields1()
输出如下所示:
等价零息收益率: 1.107998 % Actual/360 simple compounding
等价零息收益率计算的贴现因子: 0.9861595999999999
真实贴现因子: 0.9861596
1Y3M-1Y6M 间的远期收益率: 1.887223 % Actual/360 continuous compounding
ZeroCurve
下面介绍 ZeroCurve
。这种构造方法适用于给定的一组零息收益率,并为其分配给相应的期限。
ZeroCurve
对象的构造
构造函数具有以下实现
ZeroCurve(dates,
yields,
dayCounter,
cal,
i,
comp,
freq)
这些变量的类型和解释如下:
dates
:日期序列,零息收益率对应的到期日。注意:第一个日期必须是曲线的基准日期,例如收益率是 0.0 的日期。yields
:浮点数序列,零息收益率dayCounter
:DayCounter
对象,天数计算规则cal
:Calendar
对象,日历表i
:Linear
对象,线性插值方法comp
和freq
是预置整数,表示付息方式和频率
ZeroCurve
常用的成员函数均继承自基类 YieldTermStructure
。
在下面的例子中,根据 2018 年 7 月 23 日货币网公布的即期国债收盘收益率数据构建曲线。在收益率曲线构建之后,求给定日期的等价零息收益率、贴现因子和远期收益率。
期限 | 即期收益率 |
---|---|
1 | 3.0544 |
2 | 3.1565 |
3 | 3.2531 |
4 | 3.2744 |
5 | 3.2964 |
6 | 3.4092 |
7 | 3.5237 |
8 | 3.5264 |
9 | 3.5298 |
10 | 3.5337 |
15 | 3.8517 |
20 | 3.8884 |
30 | 4.0943 |
例子 2:
def testingYields2():
dates = []
dfs = []
cal = ql.China(ql.China.IB)
today = ql.Date(23, ql.July, 2018)
dc = ql.ActualActual(ql.ActualActual.ISMA)
settlementDays = 0
settlement = cal.advance(
today, settlementDays, ql.Days)
dates.append(settlement)
dates.append(settlement + ql.Period(1, ql.Years))
dates.append(settlement + ql.Period(2, ql.Years))
dates.append(settlement + ql.Period(3, ql.Years))
dates.append(settlement + ql.Period(4, ql.Years))
dates.append(settlement + ql.Period(5, ql.Years))
dates.append(settlement + ql.Period(6, ql.Years))
dates.append(settlement + ql.Period(7, ql.Years))
dates.append(settlement + ql.Period(8, ql.Years))
dates.append(settlement + ql.Period(9, ql.Years))
dates.append(settlement + ql.Period(10, ql.Years))
dates.append(settlement + ql.Period(15, ql.Years))
dates.append(settlement + ql.Period(20, ql.Years))
dates.append(settlement + ql.Period(30, ql.Years))
dfs.append(0.0000 / 100.0)
dfs.append(3.0544 / 100.0)
dfs.append(3.1565 / 100.0)
dfs.append(3.2531 / 100.0)
dfs.append(3.2744 / 100.0)
dfs.append(3.2964 / 100.0)
dfs.append(3.4092 / 100.0)
dfs.append(3.5237 / 100.0)
dfs.append(3.5264 / 100.0)
dfs.append(3.5298 / 100.0)
dfs.append(3.5337 / 100.0)
dfs.append(3.8517 / 100.0)
dfs.append(3.8884 / 100.0)
dfs.append(4.0943 / 100.0)
tmpDate1 = settlement + ql.Period(7, ql.Years)
tmpDate2 = settlement + ql.Period(8, ql.Years)
curve = ql.ZeroCurve(
dates, dfs, dc, cal, ql.Linear(), ql.Compounded, ql.Annual)
print(
"零息收益率:",
curve.zeroRate(
tmpDate2, dc, ql.Compounded, ql.Annual))
print(
"贴现因子:",
curve.discount(tmpDate2))
print(
"7Y - 8Y 远期收益率:",
curve.forwardRate(
tmpDate1, tmpDate2, dc, ql.Compounded, ql.Annual))
输出如下所示:
零息收益率: 3.526400 % Actual/Actual (ISMA) Annual compounding
贴现因子: 0.7578636936087101
7Y - 8Y 远期收益率: 3.545302 % Actual/Actual (ISMA) Annual compounding
QuantLib 金融计算——收益率曲线之构建曲线(1)的更多相关文章
- QuantLib 金融计算——收益率曲线之构建曲线(2)
目录 QuantLib 金融计算--收益率曲线之构建曲线(2) YieldTermStructure 问题描述 Piecewise** 分段收益率曲线的原理 Piecewise** 对象的构造 Fit ...
- QuantLib 金融计算——收益率曲线之构建曲线(3)
目录 QuantLib 金融计算--收益率曲线之构建曲线(3) 概述 估算期限结构的步骤 读取样本券数据 一些基本配置 配置 *Helper 对象 配置期限结构 估算期限结构 汇总结果 当前实现存在的 ...
- QuantLib 金融计算——收益率曲线之构建曲线(4)
[TOC] 如果未做特别说明,文中的程序都是 C++11 代码. QuantLib 金融计算--收益率曲线之构建曲线(4) 本文代码对应的 QuantLib 版本是 1.15.相关源代码可以在 Qua ...
- QuantLib 金融计算——收益率曲线之构建曲线(5)
目录 QuantLib 金融计算--收益率曲线之构建曲线(5) 概述 Nelson-Siegel 模型家族的成员 Nelson-Siegel 模型 Svensson 模型 修正 Svensson 模型 ...
- QuantLib 金融计算
我的微信:xuruilong100 <Implementing QuantLib>译后记 QuantLib 金融计算 QuantLib 入门 基本组件之 Date 类 基本组件之 Cale ...
- QuantLib 金融计算——自己动手封装 Python 接口(1)
目录 QuantLib 金融计算--自己动手封装 Python 接口(1) 概述 QuantLib 如何封装 Python 接口? 自己封装 Python 接口 封装 Array 和 Matrix 类 ...
- QuantLib 金融计算——自己动手封装 Python 接口(2)
目录 QuantLib 金融计算--自己动手封装 Python 接口(2) 概述 如何封装一项复杂功能? 寻找最小功能集合的策略 实践 估计期限结构参数 修改官方接口文件 下一步的计划 QuantLi ...
- QuantLib 金融计算——数学工具之插值
目录 QuantLib 金融计算--数学工具之插值 概述 一维插值方法 二维插值方法 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之插值 载入模块 ...
- QuantLib 金融计算——高级话题之模拟跳扩散过程
目录 QuantLib 金融计算--高级话题之模拟跳扩散过程 跳扩散过程 模拟算法 面临的问题 "脏"的方法 "干净"的方法 实现 示例 参考文献 如果未做特别 ...
随机推荐
- 6-查看centos中的用户和用户组
转载自:http://www.cnblogs.com/ermao0423/p/9510636.html 查看centos中的用户和用户组 1.用户列表文件:/etc/passwd/ 2.用户组列表文件 ...
- Git学习笔记-----下载GitHub上某个分支的代码
在GitHub上的仓库里,往往建有几个分支,如果只是想下载某个分支的代码,怎么办呢? 1.需要知道远程分支的名称,及远程分支所在的Git仓库 2.按下面指令下载 git clone -b 远程分支名称 ...
- Java_String_Arrays_Character_BigDecimal_Calendar_Math_System
1.String package cn.itcast_01; /* * Scanner:用于接收键盘录入数据. * * 前面的时候: * A:导包 * B:创建对象 * C:调用方法 * * Sy ...
- Java 设计模式系列(十五)迭代器模式(Iterator)
Java 设计模式系列(十五)迭代器模式(Iterator) 迭代器模式又叫游标(Cursor)模式,是对象的行为模式.迭代子模式可以顺序地访问一个聚集中的元素而不必暴露聚集的内部表象(interna ...
- centos7下载自定义仓库的镜像设置方法
1.vim /usr/lib/systemd/system/docker.service Description=Docker Application Container Engine Documen ...
- UVa 1025 A Spy in the Metro (DP动态规划)
题意:一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, 也就是尽量多坐车,最后输出最少等待时间. 析:这个挺复杂,首先时间是 ...
- Apache配置伪静态
Apache配置伪静态 注意:本文中关于Apache的配置修改,一定要记得重启Apache服务 伪静态的实现有多种方法,比如通过获取path_info信息使用php逻辑来达到伪静态,使用Apache提 ...
- 2016-2017 《移动平台开发》实验三 敏捷开发与XP实践
概述 软件=程序+软件工程 软件企业=软件+商业模式 XP是一种轻量(敏捷).高效.低风险.柔性.可预测.科学而且充满乐趣的软件开发方式. 在更短的周期内,更早地提供具体.持续的反馈信息. 在迭代的进 ...
- Oracle ERP Profile
1.配置系统 . 进入路径:SYSADMIN 登录,系统管理员--Profile--系统: 配置分类 配置文件 文件选项 内容 配置系统 ICX% ICX:日期显示样式 选择修改日期输 入格式(199 ...
- Mysql错误: ERROR 1205: Lock wait timeout exceeded try restarting transaction解决办法
select * from information_schema.INNODB_TRX;show full processlist;//找出目前连接的列表kill ID//根据ID kill掉