# MainApplicationProperties
# --master yarn --deploy-mode client 下的配置, client 模式表示,driver 是在本地机器上跑的,thrift server 设置就是 client 模式,这样会方便从 driver 中拿数
# spark job 临时保存的目录
spark.local.dir /tmp
# spark YARN Application Master 申请的内存,这个中会保存查询返回的数据,所以设置的大一些比较好。
# dw02 因为本身内存比较小,所以这里设置4G
spark.yarn.am.memory 12g
# YARN Application Master 设置的核数,默认是1,但是不够用,在处理 broad cast 变量时候会出问题,这里设置为5.
spark.yarn.am.cores 5
#spark.kryoserializer.buffer.max 1024m
#spark.master spark://10.62.34.223:7077 # --master yarn --deploy-mode cluster 下的配置
# 对应 YARN Application Master 申请的 core
spark.driver.cores 3
# 对应 YARN Application Master 申请的 memory, 注意这个和 yarn container 分配的最小内存有关, container 如果是 8G, 这里设置为4G, 实际分配也是 8G
spark.driver.memory 12g
# 返回结果的最大容量,如果这里超出了 driver memory 或者 jvm 的设置,就会 OOM
spark.driver.maxResultSize 10g # Shuffle Behavior
# 影响一个Spark Job 的主要因素还是 代码开发, 资源参数, 以及数据倾斜, shuffle调优只能在整个 Spark 性能调优中占到一小部分
# shuffle 开启压缩
spark.shuffle.compress true
# 该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。
spark.shuffle.file.buffer 64k
# 开启 External Shuffle Service ,避免 Executor 任务过重挂掉
spark.shuffle.service.enabled true
# shuffle 的 port
spark.shuffle.service.port 7337
# 在 分割文件的时候 压缩数据
spark.shuffle.spill.compress true
# shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。
spark.shuffle.io.maxRetries 10
# retry 的重试时间
spark.shuffle.io.retryWait 30s # Compression
# 数据传输过程中进行序列化
spark.serializer org.apache.spark.serializer.KryoSerializer # Spark UI,
# 每个Job的监控
spark.ui.enabled true
spark.ui.port 4040
spark.ui.killEnabled true # Execution Behavior
# 每个 Executor 申请的最小内存, 对应 YARN 的最小内存 8G, 这里就算比8G 小,申请下来的内存还是8G
spark.executor.memory 8G
# 每个 Executor 的核数,默认为 1, 实际上为1 是不够用的,如果计算量大,就会失去响应,这里设置为2,如果还是出现没有响应,继续调大
spark.executor.cores 2 # Scheduling
# FIFO 的资源分配模式
spark.scheduler.mode FIFO # 开启预测, spark 会计算每个 task 跑的时间,如果某个 task 跑的太慢了,超出了预期,就会再启动一个相同的 task,看谁先跑完,谁先跑完,就用谁的计算结果。
# 如果出现 Lost task 239.0 in stage 144.0 (TID 398794, sha2hdpw17, executor 761): TaskKilled (another attempt succeeded), 就代表这个 task 因为计算时间太长被干掉了。
spark.speculation true
# 执行间隔
spark.speculation.interval 1000ms
# 任务完成
spark.speculation.quantile 0.8
# 比其他的慢多少倍时启动推测, 设置为2 的时候,有太多的task 被 retry 了, 如果到 5 了还没跑完,可能是真的有问题了,当然也有可能是某个task 执行很复杂的计算。
# 总之,开启推测后,日志中不要经常出现 kill 信息,如果太经常了,说明设置的不好, 加大倍数,或者彻底关闭
spark.speculation.multiplier 5 #Others
# 开启动态分配,如果 job 需要的资源多,会自动向 yarn 申请资源
# 注意啊,使用 spark streaming 最好不要开这个。
spark.dynamicAllocation.enabled true
# 动态分配,最小的 executors 个数
spark.dynamicAllocation.minExecutors 3
# 最大分为 executors 个数
spark.dynamicAllocation.maxExecutors 600
# 如果有 task 等待的时间超过了1S,就会申请资源
spark.dynamicAllocation.schedulerBacklogTimeout 1s
# 如果有 executor 超过 30s 没有被使用,就干掉
spark.dynamicAllocation.executorIdleTimeout 30s # Spark Sql shuffle task 的并行度
spark.sql.shuffle.partitions 400 # 增加 broadcast time out 的时间,默认是 300s,但是我们有的 broadcast join 会超过这个事件,这个时候任务就会失败
spark.sql.broadcastTimeout 6000
# 增加窗口文件的大小,避免产生过多的小文件
spark.sql.windowExec.buffer.spill.threshold 1500000
# spark 默认的通信时间是120s, 有的时候会出现超时,这里调增为300s
spark.network.timeout 300s
#AppName
#yarn 上指定队列的名字,注意不同的机器需要修改
spark.yarn.queue spark_123

spark thrift server configuration的更多相关文章

  1. Spark Thrift Server

    ThriftServer是一个JDBC/ODBC接口,用户可以通过JDBC/ODBC连接ThriftServer来访问SparkSQL的数据.ThriftServer在启动的时候,会启动了一个Spar ...

  2. Spark SQL Thrift Server 配置 Kerberos身份认证和权限管理

    转载请注明出处:http://www.cnblogs.com/xiaodf/ 之前的博客介绍了通过Kerberos + Sentry的方式实现了hive server2的身份认证和权限管理功能,本文主 ...

  3. spark sql thrift server

    ### create data ## cat ## echo "$(date ;echo ## cat }'";exit}' ..} do passwd) echo "$ ...

  4. 「Spark」Spark SQL Thrift Server运行方式

    Spark SQL可以使用JDBC/ODBC或命令行接口充当分布式查询引擎.这种模式,用户或者应用程序可以直接与Spark SQL交互,以运行SQL查询,无需编写任何代码. Spark SQL提供两种 ...

  5. 【原创】大数据基础之Spark(3)Spark Thrift实现原理及代码实现

    spark 2.1.1 一 启动命令 启动spark thrift命令 $SPARK_HOME/sbin/start-thriftserver.sh 然后会执行 org.apache.spark.de ...

  6. 【原创】用python连接thrift Server 去执行sql的问题总汇

    场景:python和现有产品的结合和应用——python的前瞻性调研 环境:centos7 0.首先确保安装了python和pyhive,下面是连接代码: #!/usr/bin/env python ...

  7. 【原创】大叔问题定位分享(18)beeline连接spark thrift有时会卡住

    spark 2.1.1 beeline连接spark thrift之后,执行use database有时会卡住,而use database 在server端对应的是 setCurrentDatabas ...

  8. Zipkin Server Configuration Using Docker and MySQL[转]

    Zipkin is a used for capturing timing data, it also has a centralized repository, and a microweb ser ...

  9. Apache2.4:AH01630 client denied by server configuration

    问题说明:Apache服务总共有4个,是为了防止单点故障和负载均衡,负载均衡控制由局方的F5提供. 访问的内容在NAS存储上,现象是直接访问每个apache的服务内容都是没有问题,但是从负载地址过来的 ...

随机推荐

  1. Git 学习笔记(三)

    我记得最初学习的时候我提到了使用版本控制软件的最大好处是让你可以永远后悔,那么如何吃后悔药呢?在项目过程中我们很有可能因为各种因素对我们的操作进行回滚,对于传统的版本控制系统来说,并不复杂,拿 SVN ...

  2. dell台式机设置U盘启动步骤

    在开机启动看见DELL的标志后,连续按F12键进入BIOS界面,然后按照界面进行操作,操做完成后保存退出,然后再按F12键选择U盘启动. 注意硬盘模式需要选择为disabled.

  3. 编译libvlc。。。

    https://wiki.videolan.org/Win32Compile按照官网教程,安装所需工具,参考 :http://qjw.qiujinwu.com/blog/2014/12/08/cros ...

  4. Oracle中的数据字典技术及常用数据字典总结

    一.Oracle数据字典 数据字典是Oracle存放有关数据库信息的地方,其用途是用来描述数据的.比如一个表的创建者信息,创建时间信息,所属表空间信息,用户访问权限信息等.当用户在对数据库中的数据进行 ...

  5. [转]数据库事务中的隔离级别和锁+spring Transactional注解

    数据库事务中的隔离级别和锁 数据库事务在后端开发中占非常重要的地位,如何确保数据读取的正确性.安全性也是我们需要研究的问题.ACID首先总结一下数据库事务正确执行的四个要素(ACID): 原子性(At ...

  6. C#---爬虫抓取系列

    以前就尝试过研究了一些爬虫程序,也找过一些爬虫抓取软件,效果不是很好. 今天正好一个培训的网友给了我一个视频,正好研究下,收获颇丰.感谢那位哥们~ 1.首先讨论一下抓取一个页面 这里我写了模仿写了一个 ...

  7. P1888 三角函数

    题目描述 输入一组勾股数a,b,c(a≠b≠c),用分数格式输出其较小锐角的正弦值.(要求约分.) 输入输出格式 输入格式: 一行,包含三个数,即勾股数a,b,c(无大小顺序). 输出格式: 一行,包 ...

  8. oracle导入导出操作

    1,获取oracle导入导出帮助: imp help=y 2,导出命令 exp 用户名/密码@数据库实例 file=文件路径名 如: exp sys/password@orcl file=d:\dat ...

  9. canvas 画图优化

    http://www.cnblogs.com/rhcad/archive/2012/11/17/2774794.html

  10. Python——微信数据分析

    数据可视化:http://echarts.baidu.com/echarts2/doc/example.html import refrom wxpy import *import jiebaimpo ...