1251 - Forming the Council
Time Limit: 2 second(s) Memory Limit: 32 MB

In a city there are n voters, and m people formed the Govt. council. The council members are numbered from 1 to m. Now everyone is complaining that the council is biased. So, they made a
plan. The plan is that the voters are given a chance to vote again to form the new council. A vote will be like ±i ±j. '+' means the voter wants that member to be in the council, '-' means the voter doesn't
want the member to be in the council. For example, there are 4 voters, they voted like

+1 -3    the voter wants member 1 to be kept in the council or member 3 to be thrown out

+2 +3  the voter wants member 2 to be kept in the council or member 3 to be kept in the council

-1 -2     the voter wants member 1 to be thrown out or member 2 to be thrown out

-4 +1    the voter wants member 4 to be thrown out or member 1 to be kept in the council

A voter will be satisfied if at least one of his wishes becomes true. Now your task is to form the council such that all the voters are happy.

Input

Input starts with an integer T (≤ 20), denoting the number of test cases.

Each case starts with a line containing two integers n (1 ≤ n ≤ 20000) and m (1 ≤ m ≤ 8000). Each of the next n lines contains a vote in the form ±i ±j (1 ≤ i, j ≤ m).

Output

For each case, print the case number and 'Yes' if a solution exists, or 'No' if there is no solution. Then if the result is yes, print another line containing the number of members in the council followed by the members
in ascending order. And print a single space between two numbers. There can be many solutions. Any valid one will do.

Sample Input

Output for Sample Input

3

4 3

+1 +3

+2 -1

+2 -3

-1 -2

4 2

+1 -2

+1 +2

-1 -2

-1 +2

1 3

+1 -3

Case 1: Yes

2 2 3

Case 2: No

Case 3: Yes

0

Note

This is a special judge problem. Wrong output format may cause wrong answer.


PROBLEM SETTER: JANE ALAM JAN




题意:一个城市的理事会有M个投票人和N个公民组成,当中公民编号从1——N。

如今要建立一个新的理事会,

每一个投票人都给出了自己的意见,如
1,+i +j      表示 i公民 和 j公民 至少有一个留在理事会
2,+i  -j      表示 i公民留在理事会 和  j公民离开理事会 至少有一个成立
3。-i  +j      表示 i公民离开理事会 和  j公民留在理事会 至少有一个成立
4,-i   -j      表示 i公民 和 j公民 至少有一个离开理事会


如今让你找出一种方案选取若干个公民留在理事会。


若不存在方案输出No。

存在输出Yes,在下一行输出选择的公民总数 并输出被选择公民的编号。



思路:2-sat 推断可行解 + 反向拓扑染色输出可行解。不是非常难的题目,没什么好说的。这里仅仅说下建图。


建图:用 i 表示 i 留在理事会,i + N表示 i 离开理事会。


1。+i +j      表示 i公民 和 j公民 至少有一个留在理事会   
addEdge(j + N, i);// j 离开 那么 i 必然留下

addEdge(i + N, j);// i 离开 那么 j 必然留下

2。+i  -j      表示 i公民留在理事会 和  j公民离开理事会 至少有一个成立
addEdge(j, i);// j 留下  i 必然留下

addEdge(i + N, j + N);// i 离开  j 必然离开

3,-i  +j      表示 i公民离开理事会 和  j公民留在理事会 至少有一个成立
addEdge(j + N, i + N);// j 离开  i 必然离开

addEdge(i, j);// i 留下  j 必然留下

4。-i   -j      表示 i公民 和 j公民 至少有一个离开理事会
addEdge(j, i + N);// j 留下 那么 i 必然离开

addEdge(i, j + N);// i 留下 那么 j 必然离开





AC代码:


#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#define MAXN 16000+10
#define MAXM 40000+10
using namespace std;
struct Edge
{
int from, to, next;
};
Edge edge[MAXM];
int head[MAXN], edgenum;
int low[MAXN], dfn[MAXN];
int sccno[MAXN], scc_cnt;
int dfs_clock;
stack<int> S;
bool Instack[MAXN];
int N, M;
void init()
{
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v)
{
Edge E = {u, v, head[u]};
edge[edgenum] = E;
head[u] = edgenum++;
}
void getMap()
{
int a, b;
while(M--)
{
scanf("%d%d", &a, &b);
if(a > 0 && b > 0)//a 和 b 至少一个留下
{
addEdge(b + N, a);
addEdge(a + N, b);
}
else if(a > 0 && b < 0)//a留 和 b走 至少成立一个
{
b = -b;
addEdge(b, a);
addEdge(a + N, b + N);
}
else if(a < 0 && b > 0)//a走 和 b留 至少成立一个
{
a = -a;
addEdge(b + N, a + N);
addEdge(a, b);
}
else//a 和 b 至少走一个
{
a = -a, b = -b;
addEdge(b, a + N);
addEdge(a, b + N);
}
}
}
void tarjan(int u, int fa)
{
int v;
low[u] = dfn[u] = ++dfs_clock;
S.push(u);
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u])
{
scc_cnt++;
for(;;)
{
v = S.top();S.pop();
Instack[v] = false;
sccno[v] = scc_cnt;
if(v == u) break;
}
}
}
void find_cut(int l, int r)
{
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(sccno, 0, sizeof(sccno));
memset(Instack, false, sizeof(Instack));
dfs_clock = scc_cnt = 0;
for(int i = l; i <= r; i++)
if(!dfn[i]) tarjan(i, -1);
}
vector<int> G[MAXN];
int in[MAXN];
void suodian()//反向建图
{
for(int i = 1; i <= scc_cnt; i++) G[i].clear(), in[i] = 0;
for(int i = 0; i < edgenum; i++)
{
int u = sccno[edge[i].from];
int v = sccno[edge[i].to];
if(u != v)
G[v].push_back(u), in[u]++;
}
}
int k = 1;
int fp[MAXN];//建立SCC到SCC的映射
int color[MAXN];//染色
void toposort()
{
memset(color, -1, sizeof(color));
queue<int> Q;
for(int i = 1; i <= scc_cnt; i++) if(in[i] == 0) Q.push(i);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
if(color[u] == -1)
{
color[u] = 1;
color[fp[u]] = 0;
}
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(--in[v] == 0)
Q.push(v);
}
}
}
void solve()
{
printf("Case %d: ", k++);
for(int i = 1; i <= N; i++)
{
if(sccno[i] == sccno[i+N])
{
printf("No\n");
return ;
}
else
{
fp[sccno[i]] = sccno[i+N];
fp[sccno[i+N]] = sccno[i];
}
}
printf("Yes\n");
suodian();
toposort();//反向拓扑
int ans = 0;
for(int i = 1; i <= N; i++)
{
if(color[sccno[i]] == 1)
ans++;
}
printf("%d", ans);
for(int i = 1; i <= N; i++)
{
if(color[sccno[i]] == 1)
printf(" %d", i);
}
printf("\n");
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &M, &N);
init();
getMap();
find_cut(1, 2*N);
solve();
}
return 0;
}

Light oj 1251 - Forming the Council 【2-sat】【推断是否存在可行解 + 反向拓扑输出可行解】的更多相关文章

  1. Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩

    题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...

  2. Light OJ 1114 Easily Readable 字典树

    题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...

  3. Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖

    题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...

  4. Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖

    标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...

  5. Light OJ 1316 A Wedding Party 最短路+状态压缩DP

    题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...

  6. light oj 1007 Mathematically Hard (欧拉函数)

    题目地址:light oj 1007 第一发欧拉函数. 欧拉函数重要性质: 设a为N的质因数.若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N ...

  7. Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖

    题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...

  8. Jan's light oj 01--二分搜索篇

    碰到的一般题型:1.准确值二分查找,或者三分查找(类似二次函数的模型). 2.与计算几何相结合答案精度要求比较高的二分查找,有时与圆有关系时需要用到反三角函数利用 角度解题. 3.不好直接求解的一类计 ...

  9. Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...

随机推荐

  1. springCloud多模块打包时报错问题

    执行mvn clean package spring-boot:repackage,报错如下: [ERROR] Failed to execute goal org.springframework.b ...

  2. SQLServer2008 将本地excel导入到远程服务器表

    --1.创建链接服务器,相当于创建一个访问远程数据库的快捷方式 exec sp_addlinkedserver 'TestLink', ' ', 'SQLOLEDB ', '111.11.1.111' ...

  3. [转]Oracle 存储过程语法

    转自:http://www.cnblogs.com/chuncn/archive/2009/04/29/1381282.html 存储过程 1  CREATE OR REPLACE PROCEDURE ...

  4. Java 中静态变量和实例变量区别

    Java 中静态变量和实例变量区别 静态变量属于类,该类不生产对象,通过类名就可以调用静态变量. 实例变量属于该类的对象,必须产生该类对象,才能调用实例变量. 在程序运行时的区别: 实例变量属于某个对 ...

  5. Django models 常用字段类型

    1.CharField字符串字段,存较短的字符串,长文本要用TextField.必须的参数:max_length 字符的最大长度2.TextField容量很大的文本字段.admin中用 <tex ...

  6. Android BroadcastReceiver 发送有序广播

    普通广播(Normal Broadcast): 一,优缺点:和有序广播的优缺点相反! 二,发送广播的方法:sendBroadcast() 有序广播(Ordered Broadcast): 一,优缺点 ...

  7. Android RecyclerView初体验

    很早之前就听说过RecyclerView这个组件了,但一直很忙没时间学习.趁着周末,就花了一天时间来学习RecyclerView. 准备工作 在Android Studio里新建一个Android项目 ...

  8. “发布后tomcat中的classes目录为空”问题

    办法:Project-clean,ok,问题解决.

  9. HDFS 处理命令记录

    hdfs dfs -ls hdfs dfs -mkdir hdfs dfs -put hdfs dfs -get hdfs dfs -cat hadoop 执行jar  输出的目录 必须要不存在的 y ...

  10. GraphicsMagick在centos环境的安装

    一.需要安装包libpng-1.6.2rc02.tar.gz,libjpeg-6b.tar.gz,GraphicsMagick-1.3.18.tar.gz,GraphicsMagick-1.3.18最 ...