Light oj 1251 - Forming the Council 【2-sat】【推断是否存在可行解 + 反向拓扑输出可行解】
problem=1251" style="color:rgb(79,107,114)"> |
PDF (English) | problem=1251" style="color:rgb(79,107,114)">Statistics |
problem=1251" style="color:rgb(79,107,114)">Forum |
Time Limit: 2 second(s) | Memory Limit: 32 MB |
In a city there are n voters, and m people formed the Govt. council. The council members are numbered from 1 to m. Now everyone is complaining that the council is biased. So, they made a
plan. The plan is that the voters are given a chance to vote again to form the new council. A vote will be like ±i ±j. '+' means the voter wants that member to be in the council, '-' means the voter doesn't
want the member to be in the council. For example, there are 4 voters, they voted like
+1 -3 the voter wants member 1 to be kept in the council or member 3 to be thrown out
+2 +3 the voter wants member 2 to be kept in the council or member 3 to be kept in the council
-1 -2 the voter wants member 1 to be thrown out or member 2 to be thrown out
-4 +1 the voter wants member 4 to be thrown out or member 1 to be kept in the council
A voter will be satisfied if at least one of his wishes becomes true. Now your task is to form the council such that all the voters are happy.
Input
Input starts with an integer T (≤ 20), denoting the number of test cases.
Each case starts with a line containing two integers n (1 ≤ n ≤ 20000) and m (1 ≤ m ≤ 8000). Each of the next n lines contains a vote in the form ±i ±j (1 ≤ i, j ≤ m).
Output
For each case, print the case number and 'Yes' if a solution exists, or 'No' if there is no solution. Then if the result is yes, print another line containing the number of members in the council followed by the members
in ascending order. And print a single space between two numbers. There can be many solutions. Any valid one will do.
Sample Input |
Output for Sample Input |
3 4 3 +1 +3 +2 -1 +2 -3 -1 -2 4 2 +1 -2 +1 +2 -1 -2 -1 +2 1 3 +1 -3 |
Case 1: Yes 2 2 3 Case 2: No Case 3: Yes 0 |
Note
This is a special judge problem. Wrong output format may cause wrong answer.
如今要建立一个新的理事会,
存在输出Yes,在下一行输出选择的公民总数 并输出被选择公民的编号。
addEdge(i + N, j);// i 离开 那么 j 必然留下
addEdge(i + N, j + N);// i 离开 j 必然离开
addEdge(i, j);// i 留下 j 必然留下
addEdge(i, j + N);// i 留下 那么 j 必然离开
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#define MAXN 16000+10
#define MAXM 40000+10
using namespace std;
struct Edge
{
int from, to, next;
};
Edge edge[MAXM];
int head[MAXN], edgenum;
int low[MAXN], dfn[MAXN];
int sccno[MAXN], scc_cnt;
int dfs_clock;
stack<int> S;
bool Instack[MAXN];
int N, M;
void init()
{
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v)
{
Edge E = {u, v, head[u]};
edge[edgenum] = E;
head[u] = edgenum++;
}
void getMap()
{
int a, b;
while(M--)
{
scanf("%d%d", &a, &b);
if(a > 0 && b > 0)//a 和 b 至少一个留下
{
addEdge(b + N, a);
addEdge(a + N, b);
}
else if(a > 0 && b < 0)//a留 和 b走 至少成立一个
{
b = -b;
addEdge(b, a);
addEdge(a + N, b + N);
}
else if(a < 0 && b > 0)//a走 和 b留 至少成立一个
{
a = -a;
addEdge(b + N, a + N);
addEdge(a, b);
}
else//a 和 b 至少走一个
{
a = -a, b = -b;
addEdge(b, a + N);
addEdge(a, b + N);
}
}
}
void tarjan(int u, int fa)
{
int v;
low[u] = dfn[u] = ++dfs_clock;
S.push(u);
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u])
{
scc_cnt++;
for(;;)
{
v = S.top();S.pop();
Instack[v] = false;
sccno[v] = scc_cnt;
if(v == u) break;
}
}
}
void find_cut(int l, int r)
{
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(sccno, 0, sizeof(sccno));
memset(Instack, false, sizeof(Instack));
dfs_clock = scc_cnt = 0;
for(int i = l; i <= r; i++)
if(!dfn[i]) tarjan(i, -1);
}
vector<int> G[MAXN];
int in[MAXN];
void suodian()//反向建图
{
for(int i = 1; i <= scc_cnt; i++) G[i].clear(), in[i] = 0;
for(int i = 0; i < edgenum; i++)
{
int u = sccno[edge[i].from];
int v = sccno[edge[i].to];
if(u != v)
G[v].push_back(u), in[u]++;
}
}
int k = 1;
int fp[MAXN];//建立SCC到SCC的映射
int color[MAXN];//染色
void toposort()
{
memset(color, -1, sizeof(color));
queue<int> Q;
for(int i = 1; i <= scc_cnt; i++) if(in[i] == 0) Q.push(i);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
if(color[u] == -1)
{
color[u] = 1;
color[fp[u]] = 0;
}
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(--in[v] == 0)
Q.push(v);
}
}
}
void solve()
{
printf("Case %d: ", k++);
for(int i = 1; i <= N; i++)
{
if(sccno[i] == sccno[i+N])
{
printf("No\n");
return ;
}
else
{
fp[sccno[i]] = sccno[i+N];
fp[sccno[i+N]] = sccno[i];
}
}
printf("Yes\n");
suodian();
toposort();//反向拓扑
int ans = 0;
for(int i = 1; i <= N; i++)
{
if(color[sccno[i]] == 1)
ans++;
}
printf("%d", ans);
for(int i = 1; i <= N; i++)
{
if(color[sccno[i]] == 1)
printf(" %d", i);
}
printf("\n");
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &M, &N);
init();
getMap();
find_cut(1, 2*N);
solve();
}
return 0;
}
Light oj 1251 - Forming the Council 【2-sat】【推断是否存在可行解 + 反向拓扑输出可行解】的更多相关文章
- Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩
题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...
- Light OJ 1114 Easily Readable 字典树
题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...
- Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖
题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...
- Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖
标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...
- Light OJ 1316 A Wedding Party 最短路+状态压缩DP
题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...
- light oj 1007 Mathematically Hard (欧拉函数)
题目地址:light oj 1007 第一发欧拉函数. 欧拉函数重要性质: 设a为N的质因数.若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N ...
- Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖
题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...
- Jan's light oj 01--二分搜索篇
碰到的一般题型:1.准确值二分查找,或者三分查找(类似二次函数的模型). 2.与计算几何相结合答案精度要求比较高的二分查找,有时与圆有关系时需要用到反三角函数利用 角度解题. 3.不好直接求解的一类计 ...
- Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...
随机推荐
- aspectC++常用命令
常用命令:1.ag++ main.cc //在工程目录下产生编译后的exe2.ag++ main.cc --weave_only //产生.acc 纯c++文件3.ag++ main.cc --gen ...
- html5小知识点
1.兼容性问题: 对于不支持H5标签的浏览器,可以使用javascript来解决他们.然后在样式表中对这些标签定义一下默认的display:block. 采用第三方库:html5shiv.js < ...
- Greenplum使用教程
Greenplum简介 GreenPlum是一个关系型数据库集群.,它实际上是由多个独立的数据库服务组合成的逻辑数据库.GreenPlum是基于PostgreSQL(开源数据库)的分布式数据库,它采用 ...
- BZOJ 1583
思路: 维护两个指针pointer_1和pointer_2 代表用算法一走到的位置 和算法2走到的位置 若 算法一<算法2 数组后面就插入算法一的解 pointer_1++ (记得判重) (这 ...
- JS 有趣的eval优化输入验证
//eval就是计算字符串[可以放任何js代码]里的值 . var str1='12+3'; eval(str1); . var str2='[1,2,3]'; eval(str2[]); .eval ...
- Android Fragment间的广播消息接收
这种方式不用在配置文件加东西,我比较喜欢. 广播注册,可以写在Activity(onCreate),也可以写在Fragment(onActivityCreated)里. LocalBroadcastM ...
- C语言笔记(一)
笑话一枚:程序员 A:“哥们儿,最近手头紧,借点钱?”程序员 B:“成啊,要多少?”程序员 A:“一千行不?”程序员 B:“咱俩谁跟谁!给你凑个整,1024,拿去吧.” =============== ...
- QS之force(2)
Examples 1) Force input1 to 0 at the current simulator time. force input1 0 2) Force the fourth elem ...
- QS之force(1)
force This command allows you to apply stimulus interactively to VHDL signals(not variables), Verilo ...
- Percona Xtrabackup对数据库进行部分备份
Xtrabackup也可以实现部分备份,即只备份某个或某些指定的数据库或某数据库中的某个或某些表.但要使用此功能,必须启用innodb_file_per_table选项,即每张表保存为一个独立的文件. ...