How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 6048    Accepted Submission(s): 1735

Problem Description
  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10},
all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
 
Input
  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
 
Output
  For each case, output the number.
 
Sample Input
12 2
2 3
 
Sample Output
7
 

题目链接:

pid=1796">点击打开链接

给出n, m, n代表1 - n的一个序列, 接下来m个数组成的集合, 问序列中能够整除任一集合中的一个数的个数和为多少.

对读入的m个数进行推断, 非0则赋值到a数组中, 进行dfs, dfs时进行容斥运算, id为奇数则加, 为偶数则减去反复的.

AC代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int MAXN = 15;
int n, m, num, ans, a[MAXN];
int gcd(int a, int b)
{
return b == 0 ? a : gcd(b, a % b);
}
void dfs(int cur, int lcm, int id)
{
lcm = a[cur] / gcd(a[cur], lcm) * lcm;
if(id & 1) ans += (n - 1) / lcm;
else ans -= (n - 1) / lcm;
for(int i = cur + 1; i < num; ++i)
dfs(i, lcm, id + 1);
}
int main(int argc, char const *argv[])
{
while(scanf("%d%d", &n, &m) != EOF) {
num = ans = 0;
while(m--) {
int x;
scanf("%d", &x);
if(x != 0) a[num++] = x;
}
for(int i = 0; i < num; ++i)
dfs(i, a[i], 1);
printf("%d\n", ans);
}
return 0;
}

HDOJ1796 How many integers can you find(dfs+容斥)的更多相关文章

  1. How many integers can you find(容斥+dfs容斥)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. 15ecjtu校赛1006 (dfs容斥)

    Problem Description 在平面上有一个n*n的网格,即有n条平行于x轴的直线和n条平行于y轴的直线,形 成了n*n个交点(a,b)(1<=a<=n,1<=b<= ...

  4. 【BZOJ1853/2393】[Scoi2010]幸运数字/Cirno的完美算数教室 DFS+容斥

    [BZOJ1853][Scoi2010]幸运数字 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那 ...

  5. 广州工业大学2016校赛 F 我是好人4 dfs+容斥

    Problem F: 我是好人4 Description 众所周知,我是好人!所以不会出太难的题,题意很简单 给你n个数,问你1000000000(含1e9)以内有多少个正整数不是这n个数任意一个的倍 ...

  6. P2567 [SCOI2010]幸运数字 DFS+容斥定理

    P2567 [SCOI2010]幸运数字 题目描述 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,66 ...

  7. Eddy's爱好(dfs+容斥)

    Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  8. HDU 1796 How many integers can you find 【容斥】

    <题目链接> 题目大意: 给你m个数,其中可能含有0,问有多少小于n的正数能整除这个m个数中的某一个. 解题分析: 容斥水题,直接对这m个数(除0以外)及其组合的倍数在[1,n)中的个数即 ...

  9. HDU 1796 How many integers can you find(容斥)题解

    思路:二进制解决容斥问题,就和昨天做的差不多.但是这里题目给的因子不是质因子,所以我们求多个因子相乘时要算最小公倍数.题目所给的因数为非负数,故可能有0,如果因子为0就要删除. 代码: #includ ...

随机推荐

  1. 网络简要<入门篇>对应配置代码

    交换机的配置 (1)交换机的模式: switch>    用户模式,可以查看设备的部分内容 SW-3ceng>enable SW-3ceng#          进入特权模式,可以查看更多 ...

  2. rabbitmq普通集群搭建详细步骤

    由于工作需求,需要安装rabbitmq,学习之余,记录一下安装过程 准备基础编译环境yum install gcc glibc-devel make ncurses-devel openssl-dev ...

  3. JNI学习积累之一 ---- 常用函数大全

    主要资料来源: 百度文库的<JNI常用函数> . 同时对其加以了补充 . 要素  :1. 该函数大全是基于C语言方式的,对于C++方式可以直接转换 ,例如,对于生成一个jstring类型的 ...

  4. JavaScript alert()函数的使用方法

    这里向大家简单介绍一下JavaScript alert()函数的使用,alert--弹出消息对话框,并且alert消息对话框通常用于一些对用户的提示信息. JavaScript alert()函数 a ...

  5. Mysql Event 自动分表

    create table TempComments Like dycomments; 上述 SQL语句创建的新表带有原表的所有属性,主键,索引等. 自动分表怎么做呢? 使用上述语句自动创建分表. 那么 ...

  6. STL之map篇

    度熊所居住的 D 国,是一个完全尊重人权的国度.以至于这个国家的所有人命名自己的名字都非常奇怪.一个人的名字由若干个字符组成,同样的,这些字符的全排列的结果中的每一个字符串,也都是这个人的名字.例如, ...

  7. OpenCV: Kmeans的使用一维和二维点集

    OpenCVKmeans算法默认使用了Kmeans++选取种子点 参考:OpenCv中Kmeans算法实现和使用 //效果:根据半径聚类,并不一定能得到好的结果. float CBlotGlint:: ...

  8. OpenCV: 图像连通域检测的递归算法

    序言:清除链接边缘,可以使用数组进行递归运算; 连通域检测的递归算法是定义级别的检测算法,且是无优化和无语义失误的. 同样可用于寻找连通域 void ClearEdge(CvMat* MM,CvPoi ...

  9. HDU_1269_tarjan求强连通分量

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  10. 招银网络面试题、考点、知识点总结(Java岗)

    java基础 全是基础不用多说肯定考的多,尤其是招银 OOP特性/java语言特性:封装.继承.多态 多态具体的表现:多态应用举例.如何调用父类方法(super).重写和重载(重写父类方法的规则.构造 ...