nyoj--118--修路方案(次小生成树)
修路方案
- 描述
-
南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。
现在已经知道哪些城市之间可以修路,如果修路,花费是多少。
现在,军师小工已经找到了一种修路的方案,能够使各个城市都联通起来,而且花费最少。
但是,南将军说,这个修路方案所拼成的图案很不吉利,想让小工计算一下是否存在另外一种方案花费和刚才的方案一样,现在你来帮小工写一个程序算一下吧。
- 输入
- 第一行输入一个整数T(1<T<20),表示测试数据的组数
每组测试数据的第一行是两个整数V,E,(3<V<500,10<E<200000)分别表示城市的个数和城市之间路的条数。数据保证所有的城市都有路相连。
随后的E行,每行有三个数字A B L,表示A号城市与B号城市之间修路花费为L。 - 输出
- 对于每组测试数据输出Yes或No(如果存在两种以上的最小花费方案则输出Yes,如果最小花费的方案只有一种,则输出No)
- 样例输入
-
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2 - 样例输出
-
No
Yes - 来源
- POJ题目改编
- 上传者
- 张云聪
次小生成树,这道题我用的克鲁斯卡尔实现,先找到最小生成树,然后开始枚举,每次排除一条边,看是否能找到下一个最小生成树,找到的时候一定要判断是不是已经把每一条边全部连入!!
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
int u,v,val;
int flog;
}edge[200000+10];
int pre[1000],m,n,minn;
void init()
{
for(int i=0;i<1000;i++)
pre[i]=i;
}
int cmp(node s1,node s2)
{
return s1.val<s2.val;
}
int find(int x)
{
return pre[x]==x?x:pre[x]=find(pre[x]);
}
int F(int w)
{
int sum=0;
for(int i=0;i<m;i++)
{
if(i!=w)
{
int fx=find(edge[i].u);
int fy=find(edge[i].v);
if(fx!=fy)
{
pre[fx]=fy;
sum+=edge[i].val;
}
}
}
int s=find(1);//判断全部的点是不是已经全部连进去
for(int i=2;i<=n;i++)
if(pre[i]!=s)
return -1;
return sum;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].val),edge[i].flog=0;
sort(edge,edge+m,cmp);
minn=0;
for(int i=0;i<m;i++)//找到最小生成树
{
int fx=find(edge[i].u);
int fy=find(edge[i].v);
if(fx!=fy)
{
pre[fx]=fy;
edge[i].flog=1;//标记这条边在最小生成树中已经用过
minn+=edge[i].val;
}
}
int flag=0;
for(int i=0;i<m;i++)
{
if(edge[i].flog)//每次排除一条边
{
init();
if(F(i)==minn)
{
flag=1;
break;
}
}
if(flag) break;
}
if(flag) printf("Yes\n");
else printf("No\n");
}
return 0;
}
nyoj--118--修路方案(次小生成树)的更多相关文章
- Nyoj 修路方案(次小生成树)
描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路. 现在已经知道哪些城市之间可以修路,如果修路,花费是多少. 现在,军师小工已经找到 ...
- NYOJ 118 修路方案
修路方案 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修 ...
- nyoj 118 修路方案(最小生成树删边求多个最小生成树)
修路方案 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修 ...
- NYOJ 118 路方案(第二小的跨越)
修路方案 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描写叙述 南将军率领着很多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N.因为交通不太便利,南将军准备修 ...
- hdu4081 秦始皇修路(次小生成树)
题目ID:hdu4081 秦始皇修路 题目链接:点击打开链接 题目大意:给你若干个坐标,每个坐标表示一个城市,每个城市有若干个人,现在要修路,即建一个生成树,然后有一个魔法师可以免费造路(不消耗人 ...
- nyoj_118:修路方案(次小生成树)
题目链接 题意,判断次小生成树与最小生成树的权值和是否相等. 豆丁文档-- A-star和第k短路和次小生成树和Yen和MPS寻路算法 法一: 先求一次最小生成树,将这棵树上的边加入一个向量中,再判断 ...
- 修路方案 Kruskal 之 次小生成树
次小生成树 : Kruskal 是先求出来 最小生成树 , 并且记录下来所用到的的边 , 然后再求每次都 去掉最小生成树中的一个边 , 这样求最小生成树 , 然后看能不能得到 和原来最小生成树一样的 ...
- 修路方案(nyoj)
算法:次小生成树 描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路. 现在已经知道哪些城市之间可以修路,如果修路,花费是多少. 现在 ...
- hdu4081 次小生成树变形
pid=4081">http://acm.hdu.edu.cn/showproblem.php?pid=4081 Problem Description During the Warr ...
随机推荐
- Gitlab 灾备措施
Gitlab创建备份 使用Gitlab一键安装包安装Gitlab非常简单,同样的备份恢复与迁移也非常简单.使用一条命令即可创建完整的Gitlab备份: gitlab-rake gitlab:ba ...
- P1284 三角形牧场
题目描述 和所有人一样,奶牛喜欢变化.它们正在设想新造型的牧场.奶牛建筑师Hei想建造围有漂亮白色栅栏的三角形牧场.她拥有N(3≤N≤40)块木板,每块的长度Li(1≤Li≤40)都是整数,她想用所有 ...
- LINUX 环境安装 jdk-tomcat安装
linux版本两种安装方式 卸载自带jdk $rpm -qa | grep java $ rpm -e --nodeps java-**-openjdk-*$ rpm -e --nodeps java ...
- 开源作品-ThinkPHP在线分析工具(单文件绿色版)-TPLogAnalysis_PHP_1_0
TPLogAnalysis_PHP_1_0 前言:项目开发基于ThinkPHP框架,但是在调试程序的时候,没有一款日志可视化分析工具.在网络也找不到任何相关的TP日志分析工具.求人不如求己,于是决定抽 ...
- 资源帖:CV代码库搜集
2013计算机视觉代码合集一: 原文链接:http://www.yuanyong.org/blog/cv/cv-code-one 切记:一定要看原文链接 原文链接: http://blog.csdn. ...
- 提示 npm update check failed
执行npm命令时出现以下提示 虽然不影响代码运行,但总觉得看了很碍事, 查找资料后发现是因为文件夹权限的问题, .config / configstore文件夹中包含一个文件:update-notif ...
- 转载:轻量级浏览器特性检测库:feature.js
feature.js是一个很简单.快速和轻量级的浏览器特性检测库,它没有任何依赖,体积压缩最后只有1KB,它可以自动初始化,在你需要知道某个特性是否可用时,直接引入即可.以下中文为个人理解. /*! ...
- 【airtest】iOS,Android 依托 jenkins 并行跑
Airtest 只支持一台mac 连接一台iPhone, 以下方法是以“一台mac 连接一台iPhone”为基础,依托jenkins 统一管理多台iPhone. [mac] jenkins mast ...
- 研究发现:TLS1.3中的 TLS 对话恢复机制可以追踪用户
由于隐私浏览器技术的日渐成熟,网站越来越无法通过 Cookie 和网页浏览器特征来追踪用户,但道高一尺魔高一丈,现在这些网站会用 TLS 1.3 中的 TLS 对话恢复机制追踪用户. 你以为禁用浏览器 ...
- C#常用 API函数大全
常用Windows API1. API之网络函数WNetAddConnection 创建同一个网络资源的永久性连接WNetAddConnection2 创建同一个网络资源的连接WNetAddConne ...