修路方案

时间限制:3000 ms  |  内存限制:65535 KB
难度:5
描述

南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。

现在已经知道哪些城市之间可以修路,如果修路,花费是多少。

现在,军师小工已经找到了一种修路的方案,能够使各个城市都联通起来,而且花费最少。

但是,南将军说,这个修路方案所拼成的图案很不吉利,想让小工计算一下是否存在另外一种方案花费和刚才的方案一样,现在你来帮小工写一个程序算一下吧。

输入
第一行输入一个整数T(1<T<20),表示测试数据的组数

每组测试数据的第一行是两个整数V,E,(3<V<500,10<E<200000)分别表示城市的个数和城市之间路的条数。数据保证所有的城市都有路相连。

随后的E行,每行有三个数字A B L,表示A号城市与B号城市之间修路花费为L。
输出
对于每组测试数据输出Yes或No(如果存在两种以上的最小花费方案则输出Yes,如果最小花费的方案只有一种,则输出No)
样例输入
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
样例输出
No
Yes
来源
POJ题目改编
上传者
张云聪

次小生成树,这道题我用的克鲁斯卡尔实现,先找到最小生成树,然后开始枚举,每次排除一条边,看是否能找到下一个最小生成树,找到的时候一定要判断是不是已经把每一条边全部连入!!

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
int u,v,val;
int flog;
}edge[200000+10];
int pre[1000],m,n,minn;
void init()
{
for(int i=0;i<1000;i++)
pre[i]=i;
}
int cmp(node s1,node s2)
{
return s1.val<s2.val;
}
int find(int x)
{
return pre[x]==x?x:pre[x]=find(pre[x]);
}
int F(int w)
{
int sum=0;
for(int i=0;i<m;i++)
{
if(i!=w)
{
int fx=find(edge[i].u);
int fy=find(edge[i].v);
if(fx!=fy)
{
pre[fx]=fy;
sum+=edge[i].val;
}
}
}
int s=find(1);//判断全部的点是不是已经全部连进去
for(int i=2;i<=n;i++)
if(pre[i]!=s)
return -1;
return sum;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].val),edge[i].flog=0;
sort(edge,edge+m,cmp);
minn=0;
for(int i=0;i<m;i++)//找到最小生成树
{
int fx=find(edge[i].u);
int fy=find(edge[i].v);
if(fx!=fy)
{
pre[fx]=fy;
edge[i].flog=1;//标记这条边在最小生成树中已经用过
minn+=edge[i].val;
}
}
int flag=0;
for(int i=0;i<m;i++)
{
if(edge[i].flog)//每次排除一条边
{
init();
if(F(i)==minn)
{
flag=1;
break;
}
}
if(flag) break;
}
if(flag) printf("Yes\n");
else printf("No\n");
}
return 0;
}

nyoj--118--修路方案(次小生成树)的更多相关文章

  1. Nyoj 修路方案(次小生成树)

    描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路. 现在已经知道哪些城市之间可以修路,如果修路,花费是多少. 现在,军师小工已经找到 ...

  2. NYOJ 118 修路方案

    修路方案 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修 ...

  3. nyoj 118 修路方案(最小生成树删边求多个最小生成树)

    修路方案 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修 ...

  4. NYOJ 118 路方案(第二小的跨越)

    修路方案 时间限制:3000 ms  |  内存限制:65535 KB 难度:5 描写叙述 南将军率领着很多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N.因为交通不太便利,南将军准备修 ...

  5. hdu4081 秦始皇修路(次小生成树)

    题目ID:hdu4081   秦始皇修路 题目链接:点击打开链接 题目大意:给你若干个坐标,每个坐标表示一个城市,每个城市有若干个人,现在要修路,即建一个生成树,然后有一个魔法师可以免费造路(不消耗人 ...

  6. nyoj_118:修路方案(次小生成树)

    题目链接 题意,判断次小生成树与最小生成树的权值和是否相等. 豆丁文档-- A-star和第k短路和次小生成树和Yen和MPS寻路算法 法一: 先求一次最小生成树,将这棵树上的边加入一个向量中,再判断 ...

  7. 修路方案 Kruskal 之 次小生成树

    次小生成树 : Kruskal 是先求出来  最小生成树 , 并且记录下来所用到的的边 , 然后再求每次都 去掉最小生成树中的一个边 , 这样求最小生成树 , 然后看能不能得到 和原来最小生成树一样的 ...

  8. 修路方案(nyoj)

    算法:次小生成树 描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路. 现在已经知道哪些城市之间可以修路,如果修路,花费是多少. 现在 ...

  9. hdu4081 次小生成树变形

    pid=4081">http://acm.hdu.edu.cn/showproblem.php?pid=4081 Problem Description During the Warr ...

随机推荐

  1. boost的单例模式

    template <typename T> struct singleton_default {   private:     struct object_creator     {    ...

  2. RabbitMQ学习之集群消息可靠性测试

    之前介绍过关于消息发送和接收的可靠性:RabbitMQ学习之消息可靠性及特性 下面主要介绍一下集群环境下,rabbitmq实例宕机的情况下,消息的可靠性.验证rabbitmq版本[3.4.1]. 集群 ...

  3. PhotoZoom Classic 7有什么用?高品质的放大模糊图片!

    PhotoZoom Classic 7专门用于放大照片,同时保持质量.该软件配备了BenVista独特的S-Spline技术,可轻松超越Photoshop的双三次插值等替代解决方案. PhotoZoo ...

  4. spring cloud(三) config

    spring cloud 配置中心 config 搭建过程 1.搭建config-server 服务端 1.1. 新建boot工程 pom引入依赖 <!-- config配置中心 --> ...

  5. Python之进程 进阶 下

    在python程序中的进程操作 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创建的.因此,运行起 ...

  6. linu问题集锦

    问题1 系统卡 慢 执行命令延迟/var/spool/mail下root文件过大导致/var磁盘空间92% cd / && du | sort -n | tail -n 10 查看排名 ...

  7. python面向对象三大特性之一封装

    一.什么是封装 在程序设计中,封装(Encapsulation)是对具体对象的一种抽象,即将某些部分隐藏起来,在程序外部看不到,其 含义是其他程序无法调用. 要了解封装,离不开“私有化”,就是将类或者 ...

  8. 巴塞尔问题(Basel problem)的多种解法——怎么计算$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots$ ?

    (PS:本文会不断更新) $\newcommand\R{\operatorname{Res}}$ 如何计算$\zeta(2)=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{ ...

  9. FreeMarker 语法 null 的处理

    一.java 代码 @Test public void testFreeMarker() throws Exception { //1.创建一个模板文件 //2.创建一个Configuration对象 ...

  10. CF43A Football

    CF43A Football 题意翻译 题目大意 两只足球队比赛,现给你进球情况,问哪支队伍赢了. 第一行一个整数nn (1\leq n\leq 1001≤n≤100 ),表示有nn 次进球,接下来n ...