Opencv Sift和Surf特征实现图像无缝拼接生成全景图像
Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分:
- 1. 特征点提取和描述
- 2. 特征点配对,找到两幅图像中匹配点的位置
- 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像
- 4. 图像2拼接到映射图像上,完成拼接
过程1、2、3没啥好说的了,关键看看步骤4中的拼接部分。这里先采用比较简单一点的拼接方式来实现:
- 1. 找到图像1和图像2中最强的匹配点所在的位置
- 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标
- 3. 在新图像上的最强匹配点的映射坐标处,衔接两幅图像,该点左侧图像完全是图像1,右侧完全是图像2
这里拼接的正确与否完全取决于特征点的选取,如果选取的是错误匹配的特征点,拼接一定失败,所以这里选了排在第一个的最强的匹配点,作为拼接点。
测试用例一原图1:
测试用例一原图2:
Sift拼接效果:
Surf拼接效果:
本例中最强匹配点的位置在图中红色小汽车附近,可以看到有一条像折痕一样的线条,这个就是两个图片的拼接线,并且如果图1和图2在拼接处的光线条件有变化的还,拼接后在衔接处左右就会显得很突兀,如Surf拼接中。拼接效果Sift貌似要比Surf好一点。
测试用例二原图1:
测试用例二原图2:
Sift拼接效果:
Surf拼接效果:
以下是Opencv实现:
#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
using namespace cv;
//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri);
int main(int argc,char *argv[])
{
Mat image01=imread(argv[1]);
Mat image02=imread(argv[2]);
imshow("拼接图像1",image01);
imshow("拼接图像2",image02);
//灰度图转换
Mat image1,image2;
cvtColor(image01,image1,CV_RGB2GRAY);
cvtColor(image02,image2,CV_RGB2GRAY);
//提取特征点
SiftFeatureDetector siftDetector(800); // 海塞矩阵阈值
vector<KeyPoint> keyPoint1,keyPoint2;
siftDetector.detect(image1,keyPoint1);
siftDetector.detect(image2,keyPoint2);
//特征点描述,为下边的特征点匹配做准备
SiftDescriptorExtractor siftDescriptor;
Mat imageDesc1,imageDesc2;
siftDescriptor.compute(image1,keyPoint1,imageDesc1);
siftDescriptor.compute(image2,keyPoint2,imageDesc2);
//获得匹配特征点,并提取最优配对
FlannBasedMatcher matcher;
vector<DMatch> matchePoints;
matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());
sort(matchePoints.begin(),matchePoints.end()); //特征点排序
//获取排在前N个的最优匹配特征点
vector<Point2f> imagePoints1,imagePoints2;
for(int i=0;i<10;i++)
{
imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
}
//获取图像1到图像2的投影映射矩阵,尺寸为3*3
Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);
Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);
Mat adjustHomo=adjustMat*homo;
//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位
Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;
originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;
targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);
basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt;
//图像配准
Mat imageTransform1;
warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+10,image02.rows));
//在最强匹配点的位置处衔接,最强匹配点左侧是图1,右侧是图2,这样直接替换图像衔接不好,光线有突变
Mat ROIMat=image02(Rect(Point(basedImagePoint.x,0),Point(image02.cols,image02.rows)));
ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0,image02.cols-basedImagePoint.x+1,image02.rows)));
namedWindow("拼接结果",0);
imshow("拼接结果",imageTransform1);
waitKey();
return 0;
}
//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{
Mat originelP,targetP;
originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);
targetP=transformMaxtri*originelP;
float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);
float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);
return Point2f(x,y);
}
对于衔接处存在的缝隙问题,有一个解决办法是按一定权重叠加图1和图2的重叠部分,在重叠处图2的比重是1,向着图1的方向,越远离衔接处,图1的权重越来越大,图2的权重越来越低,实现平稳过渡。按照这个思路优化过的代码如下:
#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
using namespace cv;
//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri);
int main(int argc,char *argv[])
{
Mat image01=imread(argv[1]);
Mat image02=imread(argv[2]);
imshow("拼接图像1",image01);
imshow("拼接图像2",image02);
//灰度图转换
Mat image1,image2;
cvtColor(image01,image1,CV_RGB2GRAY);
cvtColor(image02,image2,CV_RGB2GRAY);
//提取特征点
SiftFeatureDetector siftDetector(800); // 海塞矩阵阈值
vector<KeyPoint> keyPoint1,keyPoint2;
siftDetector.detect(image1,keyPoint1);
siftDetector.detect(image2,keyPoint2);
//特征点描述,为下边的特征点匹配做准备
SiftDescriptorExtractor siftDescriptor;
Mat imageDesc1,imageDesc2;
siftDescriptor.compute(image1,keyPoint1,imageDesc1);
siftDescriptor.compute(image2,keyPoint2,imageDesc2);
//获得匹配特征点,并提取最优配对
FlannBasedMatcher matcher;
vector<DMatch> matchePoints;
matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());
sort(matchePoints.begin(),matchePoints.end()); //特征点排序
//获取排在前N个的最优匹配特征点
vector<Point2f> imagePoints1,imagePoints2;
for(int i=0;i<10;i++)
{
imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
}
//获取图像1到图像2的投影映射矩阵,尺寸为3*3
Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);
Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);
Mat adjustHomo=adjustMat*homo;
//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位
Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;
originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;
targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);
basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt;
//图像配准
Mat imageTransform1;
warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+110,image02.rows));
//在最强匹配点左侧的重叠区域进行累加,是衔接稳定过渡,消除突变
Mat image1Overlap,image2Overlap; //图1和图2的重叠部分
image1Overlap=imageTransform1(Rect(Point(targetLinkPoint.x-basedImagePoint.x,0),Point(targetLinkPoint.x,image02.rows)));
image2Overlap=image02(Rect(0,0,image1Overlap.cols,image1Overlap.rows));
Mat image1ROICopy=image1Overlap.clone(); //复制一份图1的重叠部分
for(int i=0;i<image1Overlap.rows;i++)
{
for(int j=0;j<image1Overlap.cols;j++)
{
double weight;
weight=(double)j/image1Overlap.cols; //随距离改变而改变的叠加系数
image1Overlap.at<Vec3b>(i,j)[0]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[0]+weight*image2Overlap.at<Vec3b>(i,j)[0];
image1Overlap.at<Vec3b>(i,j)[1]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[1]+weight*image2Overlap.at<Vec3b>(i,j)[1];
image1Overlap.at<Vec3b>(i,j)[2]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[2]+weight*image2Overlap.at<Vec3b>(i,j)[2];
}
}
Mat ROIMat=image02(Rect(Point(image1Overlap.cols,0),Point(image02.cols,image02.rows))); //图2中不重合的部分
ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0, ROIMat.cols,image02.rows))); //不重合的部分直接衔接上去
namedWindow("拼接结果",0);
imshow("拼接结果",imageTransform1);
imwrite("D:\\拼接结果.jpg",imageTransform1);
waitKey();
return 0;
}
//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{
Mat originelP,targetP;
originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);
targetP=transformMaxtri*originelP;
float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);
float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);
return Point2f(x,y);
}
Sift拼接效果:
Surf拼接效果:
拼接处的线条消失了,也没有见突兀的光线变化,基本实现了无缝拼接。
测试用例三原图1:
测试用例三原图2:
拼接效果:
Opencv Sift和Surf特征实现图像无缝拼接生成全景图像的更多相关文章
- Opencv中使用Surf特征实现图像配准及对透视变换矩阵H的平移修正
图像配准需要将一张测试图片按照第二张基准图片的尺寸.角度等形态信息进行透视(仿射)变换匹配,本例通过Surf特征的定位和匹配实现图像配准. 配准流程: 1. 提取两幅图像的Surf特征 2. 对Sur ...
- 【OpenCV新手教程之十八】OpenCV仿射变换 & SURF特征点描写叙述合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨) ...
- Opencv 使用Stitcher类图像拼接生成全景图像
Opencv中自带的Stitcher类可以实现全景图像,效果不错.下边的例子是Opencv Samples中的stitching.cpp的简化,源文件可以在这个路径里找到: \opencv\sourc ...
- python opencv SIFT,获取特征点的坐标位置
备注:SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向.SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点.边缘点.暗区的亮点及 ...
- SIFT和SURF特征(草稿)
(草稿) https://www.cnblogs.com/gavanwanggw/p/7073905.html
- 【OpenCV新手教程之十七】OpenCV重映射 & SURF特征点检測合辑
本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨) ...
- OpenCV教程(47) sift特征和surf特征
在前面三篇教程中的几种角检测方法,比如harris角检测,都是旋转无关的,即使我们转动图像,依然能检测出角的位置,但是图像缩放后,harris角检测可能会失效,比如下面的图像,图像放大之前可 ...
- opencv surf特征点匹配拼接源码
http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF ...
- sift、surf、orb 特征提取及最优特征点匹配
目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift si ...
随机推荐
- 1.16 Python基础知识 - 装饰器初识
Python中的装饰器就是函数,作用就是包装其他函数,为他们起到修饰作用.在不修改源代码的情况下,为这些函数额外添加一些功能,像日志记录,性能测试等.一个函数可以使用多个装饰器,产生的结果与装饰器的位 ...
- C++中引用传递与指针传递区别
C++中引用传递与指针传递区别 在C++中,指针和引用经常用于函数的参数传递,然而,指针传递参数和引用传递参数是有本质上的不同的: 指针传递参数本质上是值传递的方式,它所传递的是一个地址值.值传递过程 ...
- html5 audio标签相关知识点总结
1.audio指JS原生对象,假如用jquery获取到audio标签后,需要dom[0]转为原生JS对象 if(audio.paused){ //如果音频暂停,就播放 audio.play(); }e ...
- python 的 reshape强制转换格式的用途
shu=[[ 0.03046758], [ 0.05485586], [ 0.03282908], [ 0.02107211], [ 0.0391144 ], [ 0.07847244], [ 0.1 ...
- Linux字符界面安装图形界面XWindow
https://jingyan.baidu.com/article/219f4bf790f4c7de442d3825.html
- iOS_01_C语言简介
1.先学C语言的原因 * oc基于C. * oc 跟 C的思想和语法很多地方不太一样,而且OC能和C混用. * C 是所有编程语言中的经典,很多高级语言都是从C语言中衍生出来的,比如 C++,C#.O ...
- GCJ 2008 Round 1A Minimum Scalar Product
https://code.google.com/codejam/contest/32016/dashboard 题目大意: GCJ(google code jam)上的水题.下周二有比赛,来熟悉熟悉. ...
- change_names
DC在储存网表时,有时会采用特殊的字符 比如表示总线BUS[7]-BUS[0] 会表示成\BUS[7] \BUS[6]...... 在compile命令之后,write命令之前 加上:chan ...
- hdu2049(组合数学)
题意:每位新娘打扮得差点儿一模一样,并盖上大大的红盖头随机坐成一排;然后,让各位新郎寻找自己的新娘.每人仅仅准找一个,而且不同意多人找一个.最后,揭开盖头,如果找错了对象就要当众跪搓衣板...如果一共 ...
- Redis 哨兵(sentinel)模式集群配置(5.0.3版本)
一.准备工作 1.系统环境:centos6.4 2.服务器六台(1主5从): 192.168.1.161(master) 192.168.1.162(slave) 192.168.1.163(slav ...