Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分:

  • 1. 特征点提取和描述
  • 2. 特征点配对,找到两幅图像中匹配点的位置
  • 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像
  • 4. 图像2拼接到映射图像上,完成拼接

过程1、2、3没啥好说的了,关键看看步骤4中的拼接部分。这里先采用比较简单一点的拼接方式来实现:

  • 1. 找到图像1和图像2中最强的匹配点所在的位置
  • 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标
  • 3. 在新图像上的最强匹配点的映射坐标处,衔接两幅图像,该点左侧图像完全是图像1,右侧完全是图像2

这里拼接的正确与否完全取决于特征点的选取,如果选取的是错误匹配的特征点,拼接一定失败,所以这里选了排在第一个的最强的匹配点,作为拼接点。

测试用例一原图1:

测试用例一原图2:

Sift拼接效果:

Surf拼接效果:

本例中最强匹配点的位置在图中红色小汽车附近,可以看到有一条像折痕一样的线条,这个就是两个图片的拼接线,并且如果图1和图2在拼接处的光线条件有变化的还,拼接后在衔接处左右就会显得很突兀,如Surf拼接中。拼接效果Sift貌似要比Surf好一点。

测试用例二原图1:

测试用例二原图2:

Sift拼接效果:

Surf拼接效果:

以下是Opencv实现:

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp" using namespace cv; //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri); int main(int argc,char *argv[])
{
Mat image01=imread(argv[1]);
Mat image02=imread(argv[2]);
imshow("拼接图像1",image01);
imshow("拼接图像2",image02); //灰度图转换
Mat image1,image2;
cvtColor(image01,image1,CV_RGB2GRAY);
cvtColor(image02,image2,CV_RGB2GRAY); //提取特征点
SiftFeatureDetector siftDetector(800); // 海塞矩阵阈值
vector<KeyPoint> keyPoint1,keyPoint2;
siftDetector.detect(image1,keyPoint1);
siftDetector.detect(image2,keyPoint2); //特征点描述,为下边的特征点匹配做准备
SiftDescriptorExtractor siftDescriptor;
Mat imageDesc1,imageDesc2;
siftDescriptor.compute(image1,keyPoint1,imageDesc1);
siftDescriptor.compute(image2,keyPoint2,imageDesc2); //获得匹配特征点,并提取最优配对
FlannBasedMatcher matcher;
vector<DMatch> matchePoints;
matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());
sort(matchePoints.begin(),matchePoints.end()); //特征点排序
//获取排在前N个的最优匹配特征点
vector<Point2f> imagePoints1,imagePoints2;
for(int i=0;i<10;i++)
{
imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
} //获取图像1到图像2的投影映射矩阵,尺寸为3*3
Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);
Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);
Mat adjustHomo=adjustMat*homo; //获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位
Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;
originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;
targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);
basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt; //图像配准
Mat imageTransform1;
warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+10,image02.rows)); //在最强匹配点的位置处衔接,最强匹配点左侧是图1,右侧是图2,这样直接替换图像衔接不好,光线有突变
Mat ROIMat=image02(Rect(Point(basedImagePoint.x,0),Point(image02.cols,image02.rows)));
ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0,image02.cols-basedImagePoint.x+1,image02.rows))); namedWindow("拼接结果",0);
imshow("拼接结果",imageTransform1);
waitKey();
return 0;
} //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{
Mat originelP,targetP;
originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);
targetP=transformMaxtri*originelP;
float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);
float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);
return Point2f(x,y);
}

对于衔接处存在的缝隙问题,有一个解决办法是按一定权重叠加图1和图2的重叠部分,在重叠处图2的比重是1,向着图1的方向,越远离衔接处,图1的权重越来越大,图2的权重越来越低,实现平稳过渡按照这个思路优化过的代码如下:

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp" using namespace cv; //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri); int main(int argc,char *argv[])
{
Mat image01=imread(argv[1]);
Mat image02=imread(argv[2]);
imshow("拼接图像1",image01);
imshow("拼接图像2",image02); //灰度图转换
Mat image1,image2;
cvtColor(image01,image1,CV_RGB2GRAY);
cvtColor(image02,image2,CV_RGB2GRAY); //提取特征点
SiftFeatureDetector siftDetector(800); // 海塞矩阵阈值
vector<KeyPoint> keyPoint1,keyPoint2;
siftDetector.detect(image1,keyPoint1);
siftDetector.detect(image2,keyPoint2); //特征点描述,为下边的特征点匹配做准备
SiftDescriptorExtractor siftDescriptor;
Mat imageDesc1,imageDesc2;
siftDescriptor.compute(image1,keyPoint1,imageDesc1);
siftDescriptor.compute(image2,keyPoint2,imageDesc2); //获得匹配特征点,并提取最优配对
FlannBasedMatcher matcher;
vector<DMatch> matchePoints;
matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());
sort(matchePoints.begin(),matchePoints.end()); //特征点排序
//获取排在前N个的最优匹配特征点
vector<Point2f> imagePoints1,imagePoints2;
for(int i=0;i<10;i++)
{
imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
} //获取图像1到图像2的投影映射矩阵,尺寸为3*3
Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);
Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);
Mat adjustHomo=adjustMat*homo; //获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位
Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;
originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;
targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);
basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt; //图像配准
Mat imageTransform1;
warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+110,image02.rows)); //在最强匹配点左侧的重叠区域进行累加,是衔接稳定过渡,消除突变
Mat image1Overlap,image2Overlap; //图1和图2的重叠部分
image1Overlap=imageTransform1(Rect(Point(targetLinkPoint.x-basedImagePoint.x,0),Point(targetLinkPoint.x,image02.rows)));
image2Overlap=image02(Rect(0,0,image1Overlap.cols,image1Overlap.rows));
Mat image1ROICopy=image1Overlap.clone(); //复制一份图1的重叠部分
for(int i=0;i<image1Overlap.rows;i++)
{
for(int j=0;j<image1Overlap.cols;j++)
{
double weight;
weight=(double)j/image1Overlap.cols; //随距离改变而改变的叠加系数
image1Overlap.at<Vec3b>(i,j)[0]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[0]+weight*image2Overlap.at<Vec3b>(i,j)[0];
image1Overlap.at<Vec3b>(i,j)[1]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[1]+weight*image2Overlap.at<Vec3b>(i,j)[1];
image1Overlap.at<Vec3b>(i,j)[2]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[2]+weight*image2Overlap.at<Vec3b>(i,j)[2];
}
}
Mat ROIMat=image02(Rect(Point(image1Overlap.cols,0),Point(image02.cols,image02.rows))); //图2中不重合的部分
ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0, ROIMat.cols,image02.rows))); //不重合的部分直接衔接上去
namedWindow("拼接结果",0);
imshow("拼接结果",imageTransform1);
imwrite("D:\\拼接结果.jpg",imageTransform1);
waitKey();
return 0;
} //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{
Mat originelP,targetP;
originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);
targetP=transformMaxtri*originelP;
float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);
float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);
return Point2f(x,y);
}

Sift拼接效果:

Surf拼接效果:

拼接处的线条消失了,也没有见突兀的光线变化,基本实现了无缝拼接。

测试用例三原图1:

测试用例三原图2:

拼接效果:

Opencv Sift和Surf特征实现图像无缝拼接生成全景图像的更多相关文章

  1. Opencv中使用Surf特征实现图像配准及对透视变换矩阵H的平移修正

    图像配准需要将一张测试图片按照第二张基准图片的尺寸.角度等形态信息进行透视(仿射)变换匹配,本例通过Surf特征的定位和匹配实现图像配准. 配准流程: 1. 提取两幅图像的Surf特征 2. 对Sur ...

  2. 【OpenCV新手教程之十八】OpenCV仿射变换 &amp; SURF特征点描写叙述合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)  ...

  3. Opencv 使用Stitcher类图像拼接生成全景图像

    Opencv中自带的Stitcher类可以实现全景图像,效果不错.下边的例子是Opencv Samples中的stitching.cpp的简化,源文件可以在这个路径里找到: \opencv\sourc ...

  4. python opencv SIFT,获取特征点的坐标位置

    备注:SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向.SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点.边缘点.暗区的亮点及 ...

  5. SIFT和SURF特征(草稿)

    (草稿) https://www.cnblogs.com/gavanwanggw/p/7073905.html

  6. 【OpenCV新手教程之十七】OpenCV重映射 &amp; SURF特征点检測合辑

    本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨)  ...

  7. OpenCV教程(47) sift特征和surf特征

         在前面三篇教程中的几种角检测方法,比如harris角检测,都是旋转无关的,即使我们转动图像,依然能检测出角的位置,但是图像缩放后,harris角检测可能会失效,比如下面的图像,图像放大之前可 ...

  8. opencv surf特征点匹配拼接源码

    http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF ...

  9. sift、surf、orb 特征提取及最优特征点匹配

    目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift si ...

随机推荐

  1. swiper轮播控件配置项

    var mySwiper = new Swiper ('.swiper-container', {    direction: 'horizontal',    loop: true,    auto ...

  2. Fiddler代理配置

     1.下载安装软件Fiddler 2.Fiddler设置HTTPS代理(如果代理的是https请求的需要操作这一步) 打开Fiddler,菜单栏:Tools -> Fiddler Options ...

  3. Flask项目之手机端租房网站的实战开发(九)

    说明:该篇博客是博主一字一码编写的,实属不易,请尊重原创,谢谢大家! 接着上一篇博客继续往下写 :https://blog.csdn.net/qq_41782425/article/details/8 ...

  4. 关于C++中用两个迭代器方式初始化string的知识

    string(iter1, iter2); 第一点:两个迭代器必须指向同一个容器. 第二点:iter2必须>=iter1. 第三点:假设iter1等于iter2,那么结果为空[] 另外一个比較特 ...

  5. qemu 参数简介

    参数 示例 说明 -hda -hda /data/windows.img 指定windows.img作为硬盘镜像 -cdrom -cdrom /data/windows.iso 指定windows.i ...

  6. NSAttributeString创建各种文字效果

    NSDictionary *attributes =@{ NSForegroundColorAttributeName: [UIColorredColor], NSFontAttributeName: ...

  7. Mosquito的优化——订阅树优化(八)

    本文由逍遥子撰写.转发请标注原址: http://blog.csdn.net/houjixin/article/details/46413783 或 http://houjixin.blog.163. ...

  8. Java 线程第三版 第九章 Thread调度 读书笔记

    一.Thread调度的概述 import java.util.*; import java.text.*; public class Task implements Runnable { long n ...

  9. 读取Webpage表中的内容 分类: H3_NUTCH 2015-02-10 14:59 418人阅读 评论(0) 收藏

    nutch将从网页中抓取到的信息放入hbase数据库中,默认情况下表名为$crawlId_webpage,但表中的内容以16进制进行表示,直接scan或者通过Java API进行读取均只能读取到16进 ...

  10. [CSS] Design for Mobile First with Tachyons

    Tachyons provides extensions (-ns, -m, and -l) to many of its classes to help you design for respons ...