题意

(n<=200000)

题解

把DP转移方程写出来,这不是卡特兰数吗?
然后就解决了。

做完这题我发现

DP真是一个好东西。

(公式连乘所以中间要加mod要不爆longlong了)

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const long long N=;
const long long mod=1e9+;
long long n,dp[N];
long long ksm(long long x,long long b){
long long tmp=;
while(b){
if(b&){
tmp=(tmp*x)%mod;
}
b>>=;
x=(x*x)%mod;
}
return tmp;
}
int main(){
scanf("%lld",&n);
dp[]=;
for(long long i=;i<=n;i++){
dp[i]=dp[i-]*(*i-)%mod*ksm(i+,mod-);
dp[i]%=mod;
}
printf("%lld",dp[n]);
return ;
}

luogu P1375 小猫(卡特兰数)的更多相关文章

  1. Luogu 1641[SCOI2010]生成字符串 - 卡特兰数

    Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...

  2. Luogu P1754球迷购票问题【dp/卡特兰数】By cellur925

    题目传送门 虽然是水dp,但我感到还是有些无从下手== f[i][j]表示还剩i个50元没考虑,j个100元没考虑的方案数,可有转移f[i][j]=f[i-1][j]+f[i][j-1] 但其实它也可 ...

  3. luogu 3200 [HNOI2009]有趣的数列 卡特兰数+质因数分解

    打个表发现我们要求的就是卡特兰数的第 n 项,即 $\frac{C_{2n}^{n}}{n+1}$. 对组合数的阶乘展开,然后暴力分解质因子并开桶统计一下即可. code: #include < ...

  4. Luogu P2532 [AHOI2012]树屋阶梯 卡特兰数

    接着压位OvO... 我不会告诉你答案就是卡特兰数... 为什么呢? 首先,$ans[0]=1,ans[1]=1,ans[2]=2$ 对于$ans[3]$,我们可以发现他是这样来的: $ans[3]= ...

  5. 洛谷——P1375 小猫

    P1375 小猫 题目描述 有2n只小猫站成一圈,主人小明想把它们两两之间用绳子绑住尾巴连在一起.同时小明是个完美主义者,不容许看到有两根绳子交叉.请问小明有几种连线方案,可以把让所有小猫两两配对? ...

  6. 洛谷—— P1375 小猫

    https://www.luogu.org/problemnew/show/1375 题目描述 有2n只小猫站成一圈,主人小明想把它们两两之间用绳子绑住尾巴连在一起.同时小明是个完美主义者,不容许看到 ...

  7. 洛谷 p1044 栈 【Catalan(卡特兰数)】【经典题】

    题目链接:https://www.luogu.org/problemnew/show/P1044 转载于:https://www.luogu.org/blog/QiXingZhi/solution-p ...

  8. 【题解】洛谷P3200 [HNOI2009] 有趣的数列(卡特兰数+质因数分解)

    洛谷P3200:https://www.luogu.org/problemnew/show/P3200 思路 这题明显是卡特兰数的题型咯 一看精度有点大 如果递推卡特兰数公式要到O(n2) 可以证明得 ...

  9. P2532 [AHOI2012]树屋阶梯 卡特兰数

    这个题是一个卡特兰数的裸题,为什么呢?因为可以通过划分来导出递推式从而判断是卡特兰数,然后直接上公式就行了.卡特兰数的公式见链接. https://www.luogu.org/problemnew/s ...

随机推荐

  1. css 书写推荐顺序

    1.位置属性(position, top, right, z-index, display, float等)2.大小(width, height, padding, margin)3.文字系列(fon ...

  2. 使用ECharts制作图形时,如何设置指定图形颜色?

    使用ECharts制作图形时,图形颜色是默认的颜色,有时需求需要指定图形颜色,这就需要自己去设置. 在option下的series属性中设置itemStyle,如下所示: itemStyle: { n ...

  3. Sona && Little Elephant and Array && Little Elephant and Array && D-query && Powerful array && Fast Queries (莫队)

    vjudge上莫队专题 真的是要吐槽自己(自己的莫队手残写了2个bug) s=sqrt(n) 是元素的个数而不是询问的个数(之所以是sqrt(n)使得左端点每个块左端点的范围嘴都是sqrt(n)) 在 ...

  4. python之静态属性、类方法、静态方法

    静态属性.类方法.静态方法 1. 静态属性:在函数前加@property,将函数逻辑”封装“成数据属性,外部直接调用函数名,如同调用属性一样.这个函数是可以调用类和实例的属性的,    静态属性的作用 ...

  5. poj 3311 Hie with the Pie (状压dp) (Tsp问题)

    这道题就是Tsp问题,稍微加了些改变 注意以下问题 (1)每个点可以经过多次,这里就可以用弗洛伊德初始化最短距离 (2)在循环中集合可以用S表示更清晰一些 (3)第一维为状态,第二维为在哪个点,不要写 ...

  6. Unity 常用常找的东西存放

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/50483316 作者:car ...

  7. jvm 虚拟机参数_方法区内存分配

    1.方法区( 永久区 ) 和堆一样,方法区是一块所有线程共享的区域,他用于保存系统类的信息.默认情况下 -XX:MaxPermSize 为 64m.如果系统运行时产生大量的类,就需要设置一个合适方法区 ...

  8. ASP.NET-HTTP响应标头

    Reponse Headers 理论上所有的响应头信息都应该是回应请求头的.但是服务端为了效率,安全,还有其他方面的考虑,会添加相对应的响应头信息,从上图可以看到: Cache-Control:mus ...

  9. Tomcat远程代码执行漏洞(CVE-2017-12615)修复

    一.漏洞介绍 2017年9月19日,Apache Tomcat官方确认并修复了两个高危漏洞,其中就有Tomcat远程代码执行漏洞,当存在漏洞的Tomcat运行在Windwos主机上,且启用了HTTP ...

  10. java ee服务器/应用服务器的理解

    42.由Apache.Sun 和其他一些公司及个人共同开发而成.由于有了Sun 的参与和支持,最新的Servlet 和JSP 规范总是能在Tomcat 中得到体现.43.可以这样认为,当在一台机器上配 ...