John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts visiting

beautiful places. To save money, John must determine the shortest closed tour that connects his

destinations. Each destination is represented by a point in the plane pi =< xi

, yi >. John uses the

following strategy: he starts from the leftmost point, then he goes strictly left to right to the rightmost

point, and then he goes strictly right back to the starting point. It is known that the points have

distinct x-coordinates.

Write a program that, given a set of n points in the plane, computes the shortest closed tour that

connects the points according to John’s strategy.

Input

The program input is from a text file. Each data set in the file stands for a particular set of points. For

each set of points the data set contains the number of points, and the point coordinates in ascending

order of the x coordinate. White spaces can occur freely in input. The input data are correct.

Output

For each set of data, your program should print the result to the standard output from the beginning

of a line. The tour length, a floating-point number with two fractional digits, represents the result.

Note: An input/output sample is in the table below. Here there are two data sets. The first one

contains 3 points specified by their x and y coordinates. The second point, for example, has the x

coordinate 2, and the y coordinate 3. The result for each data set is the tour length, (6.47 for the first

data set in the given example).

Sample Input

3

1 1

2 3

3 1

4

1 1

2 3

3 1

4 2

Sample Output

6.47

7.89

这题就是DP,思路什么的书上说的很清楚了

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n;
struct node
{
double x,y;
}a[];
double dis[][];
double dp[][];
int main()
{
while(scanf("%d",&n)==)
{
for(int i=;i<=n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
for(int j=i-;j>=;j--)
dis[j][i]=sqrt(((a[i].x-a[j].x)*(a[i].x-a[j].x))+((a[i].y-a[j].y)*(a[i].y-a[j].y)));
}
//pre();
for(int i=n-;i>=;i--)
dp[n-][i]=dis[n-][n]+dis[i][n];
for(int i=n-;i>=;i--)
for(int j=i-;j>=;j--)
dp[i][j]=min(dp[i+][j]+dis[i][i+],dp[i+][i]+dis[j][i+]);
printf("%.2lf\n",dp[][]+dis[][]);
}
return ;
}

Tour UVA - 1347的更多相关文章

  1. ACM - 动态规划 - UVA 1347 Tour

    UVA 1347 Tour 题解 题目大意:有 \(n\) 个点,给出点的 \(x\).\(y\) 坐标.找出一条经过所有点一次的回路,从最左边的点出发,严格向右走,到达最右点再严格向左,回到最左点. ...

  2. UVa 1347 Tour

    Tour Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Description   Joh ...

  3. UVA 1347 Tour 【双调旅行商/DP】

    John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts vi ...

  4. 【UVa 1347】Tour

    [Link]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  5. UVA 1347(POJ 2677) Tour(双色欧几里德旅行商问题)

    Description John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane a ...

  6. UVa 1347 (双线程DP) Tour

    题意: 平面上有n个坐标均为正数的点,按照x坐标从小到大一次给出.求一条最短路线,从最左边的点出发到最右边的点,再回到最左边的点.除了第一个和最右一个点其他点恰好只经过一次. 分析: 可以等效为两个人 ...

  7. UVA - 1347 Tour(DP + 双调旅行商问题)

    题意:给出按照x坐标排序的n个点,让我们求出从最左端点到最右短点然后再回来,并且经过所有点且只经过一次的最短路径. 分析:这个题目刘汝佳的算法书上也有详解(就在基础dp那一段),具体思路如下:按照题目 ...

  8. UVA 1347 Tour 双调TSP

    TSP是NP难,但是把问题简化,到最右点之前的巡游路线只能严格向右,到最右边的点以后,返回的时候严格向左,这个问题就可以在多项式时间内求出来了. 定义状态d[i][j]表示一个人在i号点,令一个人在j ...

  9. UVA 1347"Tour"(经典DP)

    传送门 参考资料: [1]:紫书 题意: 欧几里得距离???? 题解: AC代码: #include<bits/stdc++.h> using namespace std; ; int n ...

随机推荐

  1. kswapd和pdflush

    首 先,它们存在的目的不同,kswap的作用是管理内存,pdflush的作用是同步内存和磁盘,当然因为数据写入磁盘前可能会换存在内存,这些缓存真正写 入磁盘由三个原因趋势:1.用户要求缓存马上写入磁盘 ...

  2. Perl Connect to Database without password as sysdba

    #!/oracle/product/11g/db/perl/bin/perl use lib '/oracle/product/11g/db/perl/lib/site_perl/5.10.0'; u ...

  3. 121. Best Time to Buy and Sell Stock(动态规划)

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  4. dubbo服务telnet命令的使用

    转自:https://www.cnblogs.com/feiqihang/p/4387330.html dubbo服务发布之后,我们可以利用telnet命令进行调试.管理.Dubbo2.0.5以上版本 ...

  5. Tkinter图形界面设计(GUI)

    [因为这是我第一个接触的GUI图形界面python库,现在也不用了,所以大多数内容都来自之前花 钱买的一些快速入门的内容,可以当作简单的知识点查询使用] 在此声明:内容来自微信公众号GitChat,付 ...

  6. (45). Spring Boot MyBatis连接Mysql数据库【从零开始学Spring Boot】

    大家在开发的时候,会喜欢jdbcTemplate操作数据库,有喜欢JPA操作数据库的,有喜欢MyBatis操作数据库的,对于这些我个人觉得哪个使用顺手就使用哪个就好了,并没有一定要使用哪个,个人在实际 ...

  7. noip模拟赛 gcd

    题目更正:输出的a<b. 分析:这是一道数学题,范围这么大肯定是有规律的,打个表可以发现f(a,b)=k,a+b最小的a,b是斐波那契数列的第k+1项和k+2项.矩阵快速幂搞一搞就好了. #in ...

  8. asciiflow

    http://asciiflow.com/ https://maxiang.io/# http://www.jianshu.com/p/19432b5e3c60

  9. zoj 1648 Circuit Board

    题目:意思就是推断给定的几条线段是否有相交的. 方法:模版吧,有空在来细细学习. 代码: #include <iostream> #include <cstdio> using ...

  10. 抓包分析TCP的三次握手和四次握手

    问题描写叙述: 在上一篇<怎样对Android设备进行抓包>中提到了,server的开发者须要我bug重现然后提供抓包给他们分析.所以抓好包自己也试着分析了一下.发现里面全是一些TCP协议 ...