John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts visiting

beautiful places. To save money, John must determine the shortest closed tour that connects his

destinations. Each destination is represented by a point in the plane pi =< xi

, yi >. John uses the

following strategy: he starts from the leftmost point, then he goes strictly left to right to the rightmost

point, and then he goes strictly right back to the starting point. It is known that the points have

distinct x-coordinates.

Write a program that, given a set of n points in the plane, computes the shortest closed tour that

connects the points according to John’s strategy.

Input

The program input is from a text file. Each data set in the file stands for a particular set of points. For

each set of points the data set contains the number of points, and the point coordinates in ascending

order of the x coordinate. White spaces can occur freely in input. The input data are correct.

Output

For each set of data, your program should print the result to the standard output from the beginning

of a line. The tour length, a floating-point number with two fractional digits, represents the result.

Note: An input/output sample is in the table below. Here there are two data sets. The first one

contains 3 points specified by their x and y coordinates. The second point, for example, has the x

coordinate 2, and the y coordinate 3. The result for each data set is the tour length, (6.47 for the first

data set in the given example).

Sample Input

3

1 1

2 3

3 1

4

1 1

2 3

3 1

4 2

Sample Output

6.47

7.89

这题就是DP,思路什么的书上说的很清楚了

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n;
struct node
{
double x,y;
}a[];
double dis[][];
double dp[][];
int main()
{
while(scanf("%d",&n)==)
{
for(int i=;i<=n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
for(int j=i-;j>=;j--)
dis[j][i]=sqrt(((a[i].x-a[j].x)*(a[i].x-a[j].x))+((a[i].y-a[j].y)*(a[i].y-a[j].y)));
}
//pre();
for(int i=n-;i>=;i--)
dp[n-][i]=dis[n-][n]+dis[i][n];
for(int i=n-;i>=;i--)
for(int j=i-;j>=;j--)
dp[i][j]=min(dp[i+][j]+dis[i][i+],dp[i+][i]+dis[j][i+]);
printf("%.2lf\n",dp[][]+dis[][]);
}
return ;
}

Tour UVA - 1347的更多相关文章

  1. ACM - 动态规划 - UVA 1347 Tour

    UVA 1347 Tour 题解 题目大意:有 \(n\) 个点,给出点的 \(x\).\(y\) 坐标.找出一条经过所有点一次的回路,从最左边的点出发,严格向右走,到达最右点再严格向左,回到最左点. ...

  2. UVa 1347 Tour

    Tour Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Description   Joh ...

  3. UVA 1347 Tour 【双调旅行商/DP】

    John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts vi ...

  4. 【UVa 1347】Tour

    [Link]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  5. UVA 1347(POJ 2677) Tour(双色欧几里德旅行商问题)

    Description John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane a ...

  6. UVa 1347 (双线程DP) Tour

    题意: 平面上有n个坐标均为正数的点,按照x坐标从小到大一次给出.求一条最短路线,从最左边的点出发到最右边的点,再回到最左边的点.除了第一个和最右一个点其他点恰好只经过一次. 分析: 可以等效为两个人 ...

  7. UVA - 1347 Tour(DP + 双调旅行商问题)

    题意:给出按照x坐标排序的n个点,让我们求出从最左端点到最右短点然后再回来,并且经过所有点且只经过一次的最短路径. 分析:这个题目刘汝佳的算法书上也有详解(就在基础dp那一段),具体思路如下:按照题目 ...

  8. UVA 1347 Tour 双调TSP

    TSP是NP难,但是把问题简化,到最右点之前的巡游路线只能严格向右,到最右边的点以后,返回的时候严格向左,这个问题就可以在多项式时间内求出来了. 定义状态d[i][j]表示一个人在i号点,令一个人在j ...

  9. UVA 1347"Tour"(经典DP)

    传送门 参考资料: [1]:紫书 题意: 欧几里得距离???? 题解: AC代码: #include<bits/stdc++.h> using namespace std; ; int n ...

随机推荐

  1. git 的简单使用(4)

    多人协作的工作模式通常是这样: 首先,可以试图用git push origin <branch-name>推送自己的修改: 如果推送失败,则因为远程分支比你的本地更新,需要先用git pu ...

  2. 00107_TCP通信

    1.TCP通信的概述 (1)TCP通信同UDP通信一样,都能实现两台计算机之间的通信,通信的两端都需要创建socket对象: (2)区别在于: ①UDP中只有发送端和接收端,不区分客户端与服务器端,计 ...

  3. Redis学习总结(1)——Redis内存数据库详细教程

    1.redis是什么 2.redis的作者何许人也 3.谁在使用redis 4.学会安装redis 5.学会启动redis 6.使用redis客户端 7.redis数据结构 – 简介 8.redis数 ...

  4. CodeForces - 284C - Cows and Sequence

    先上题目: C. Cows and Sequence time limit per test 3 seconds memory limit per test 256 megabytes input s ...

  5. Codeforces Round #418 (Div. 2) C. An impassioned circulation of affection

    C. An impassioned circulation of affection time limit per test 2 seconds memory limit per test 256 m ...

  6. HDU 2563 统计问题(递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=2563 将向上移的步数设为a[n],将向左右移的步数设为b[n],有a[n]=a[n-1]+b[n-1 ...

  7. 【Java集合源代码剖析】Hashtable源代码剖析

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/36191279 Hashtable简单介绍 Hashtable相同是基于哈希表实现的,相同每 ...

  8. Chrome development tools学习笔记(3)

    (上次DOM的部分做了些补充,欢迎查看Chrome development tools学习笔记(2)) 利用DevTools Elements工具来调试页面样式 CSS(Cascading Style ...

  9. codeforces #262 DIV2 B题 Little Dima and Equation

    题目地址:http://codeforces.com/contest/460/problem/B 这题乍一看没思路.可是细致分析下会发现,s(x)是一个从1到81的数,不管x是多少.所以能够枚举1到8 ...

  10. Windowns 无法启动 Office Software Protection Platform 服务,系统找不到指定的文件

    导致该服务无法启动的原因是,用kms8激活了win7后又用oem8激活试了下,结果就这样,然后就无法激活了,状态ID都不可用.试过禁用计划任务项目,重建MBR,重建PBR,都无效果.最后在这里找到了解 ...