【链接】h在这里写链接


【题意】


    【Description】

        给你n(n<=10^9)个数字,把它们依次,一个一个地添加在空串S的后面.

        要求每添加一次之后,都要求出串S的本质不同的子串个数。

        即维护字符串的本质不同的子串个数.

【题解】


    把整个字符串倒过来。

    这样,就变成求从第n-i开始的后缀,它本质不同的子串的个数了。

    我们可以利用前i-1个的答案,对于第i个答案;看看从第n-i开始的后缀会和之前哪些已经算过的

    后缀产生重叠的部分->lcp->则减去lcp就是新增加的子串的个数了。

    (这部分lcp是什么时候算的不重要,反正你只要知道它之前有被算过就好了);

    ->回忆一下求n个字符的不同子串的时候的做法,则我们只要找到已经算过的,和它排名相邻(最靠近)的两个后缀.

    答案+=n-i-max(lcp1,lcp2);

    cout << 答案 << endl;

        n个字符不同子串的时候,只要删掉height[i]就可以了,是因为Rank为i+1的后缀我们还没算,

        (因为我们是顺序i从1..n的)..所以不用考虑Height[i+1])

【错的次数】


0

【反思】


Tip:前缀问题,倒转一下就能转化为后缀问题了.

【代码】

#include<bits/stdc++.h>
#define ll long long
using namespace std; const int N = 2e5;
const int MAX_CHAR = 1e5+10;//每个数字的最大值。
int s[N + 10];//如果是数字,就写成int s[N+10]就好,从0开始存
int Sa[N + 10], T1[N + 10], T2[N + 10], C[N + 10];
int Height[N + 10], Rank[N + 10];
map <int, int> dic; void build_Sa(int n, int m) {
int i, *x = T1, *y = T2;
for (i = 0; i<m; i++) C[i] = 0;
for (i = 0; i<n; i++) C[x[i] = s[i]]++;
for (i = 1; i<m; i++) C[i] += C[i - 1];
for (i = n - 1; i >= 0; i--) Sa[--C[x[i]]] = i;
for (int k = 1; k <= n; k <<= 1)
{
int p = 0;
for (i = n - k; i<n; i++) y[p++] = i;
for (i = 0; i<n; i++) if (Sa[i] >= k) y[p++] = Sa[i] - k;
for (i = 0; i<m; i++) C[i] = 0;
for (i = 0; i<n; i++) C[x[y[i]]]++;
for (i = 1; i<m; i++) C[i] += C[i - 1];
for (i = n - 1; i >= 0; i--) Sa[--C[x[y[i]]]] = y[i];
swap(x, y);
p = 1; x[Sa[0]] = 0;
for (i = 1; i<n; i++)
x[Sa[i]] = y[Sa[i - 1]] == y[Sa[i]] && y[Sa[i - 1] + k] == y[Sa[i] + k] ? p - 1 : p++;
if (p >= n) break;
m = p;
}
} void getHeight(int n)
{
int i, j, k = 0;
for (i = 1; i <= n; i++) Rank[Sa[i]] = i;
for (i = 0; i<n; i++) {
if (k) k--;
j = Sa[Rank[i] - 1];
while (s[i + k] == s[j + k]) k++;
Height[Rank[i]] = k;
}
} const int MAXL = 18;//log2数组的最大长度
const int INF = 0x3f3f3f3f;//数值绝对值的最大值
int n, tot;
set <int> mset; struct abc {
int pre2[MAXL + 5], need[N + 10];
int fmax[N + 10][MAXL + 5], fmin[N + 10][MAXL + 5]; void init(int n)
{
pre2[0] = 1;
for (int i = 1; i <= MAXL; i++)
{
pre2[i] = pre2[i - 1] << 1;
}
need[1] = 0; need[2] = 1;
int temp = 2;
for (int i = 3; i <= n; i++)//need[i]表示长度为i是2的多少次方,可以理解为[log2i]
if (pre2[temp] == i)
need[i] = need[i - 1] + 1, temp++;
else
need[i] = need[i - 1];
} void getst(int *a, int n)
{
memset(fmax, -INF, sizeof fmax);
memset(fmin, INF, sizeof fmin);
for (int i = 1; i <= n; i++)//下标从0开始就改成对应的就好
fmax[i][0] = fmin[i][0] = a[i]; for (int l = 1; pre2[l] <= n; l++)
for (int i = 1; i <= n; i++)
if (i + pre2[l] - 1 <= n)
fmax[i][l] = max(fmax[i][l - 1], fmax[i + pre2[l - 1]][l - 1]); for (int l = 1; pre2[l] <= n; l++)
for (int i = 1; i <= n; i++)
if (i + pre2[l] - 1 <= n)
fmin[i][l] = min(fmin[i][l - 1], fmin[i + pre2[l - 1]][l - 1]);
} int getmin(int l, int r)
{
int len = need[r - l + 1];
return min(fmin[l][len], fmin[r - pre2[len] + 1][len]);
} int getmax(int l, int r)
{
int len = need[r - l + 1];
return max(fmax[l][len], fmax[r - pre2[len] + 1][len]);
} }ST; int main() {
//freopen("F:\\rush.txt", "r", stdin);
scanf("%d", &n);
for (int i = 0; i <= n-1; i++) {
int x;
scanf("%d", &x);
if (dic[x] == 0) dic[x] = ++tot;
s[n-i-1] = dic[x];
}
s[n] = 0;
build_Sa(n + 1, MAX_CHAR);//注意调用n+1
getHeight(n);
ST.init(n);
ST.getst(Height, n);
ll ans = 1;
mset.insert(Rank[n - 1]);
printf("%lld\n", ans);
for (int i = n - 2; i >= 0; i--)
{
int mx = 0;
set<int>::iterator it = mset.upper_bound(Rank[i]);
if (it != mset.end()) mx = max(mx, ST.getmin(Rank[i] + 1, *it));
if (it != mset.begin())
{
it--;
mx = max(mx, ST.getmin((*it) + 1, Rank[i]));
}
ans += n - i - mx;
mset.insert(Rank[i]);
printf("%lld\n", ans);
} return 0;
}

【BZOJ 4516】生成魔咒的更多相关文章

  1. bzoj 4516: 生成魔咒 后缀数组

    题目大意 在结尾动态插入字符,每次插入结束后输出当前串中本质不同的字串个数 题解 注意一开始是空串,然后我们我们可以打表观察规律 我们发现一直在开头插入字符和一直在结尾插入字符得到的答案是一样的 所以 ...

  2. BZOJ 4516: [Sdoi2016]生成魔咒 [后缀自动机]

    4516: [Sdoi2016]生成魔咒 题意:询问一个字符串每个前缀有多少不同的子串 做了一下SDOI2016R1D2,题好水啊随便AK 强行开map上SAM 每个状态的贡献就是\(Max(s)-M ...

  3. [BZOJ 4516] [SDOI 2016] 生成魔咒

    Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例 ...

  4. 【刷题】BZOJ 4516 [Sdoi2016]生成魔咒

    Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例 ...

  5. BZOJ 4516. [Sdoi2016]生成魔咒【SAM 动态维护不同子串数量】

    [Sdoi2016]生成魔咒 动态维护不同子串的数量 想想如果只要查询一次要怎么做,那就是计算各个点的\(len[u]-len[link[u]]\)然后求和即可,现在要求动态更新,我们可以保存一个答案 ...

  6. 4516: [Sdoi2016]生成魔咒

    4516: [Sdoi2016]生成魔咒 链接 题意: 求本质不同的子串. 分析: 后缀数组或者SAM都可以. 考虑SAM中每个点的可以表示的子串是一个区间min(S)~max(S),把每个点的这个区 ...

  7. BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

    #include<iostream> #include<cstdio> #include<cstring> #include<queue> #inclu ...

  8. [Sdoi2016]生成魔咒[SAM or SA]

    4516: [Sdoi2016]生成魔咒 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 569[Submit][Statu ...

  9. 【BZOJ4516】生成魔咒(后缀自动机)

    [BZOJ4516]生成魔咒(后缀自动机) 题面 BZOJ Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. ...

  10. BZOJ4516:[SDOI2016]生成魔咒——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4516 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一 ...

随机推荐

  1. 71.用express框架,出现 express.Router is not a function

    Express版本太久

  2. 7.Web Service 调用天气代码

    1. 2500多个城市天气预报 WEB服务公用事业 Endpoint:http://webservice.webxml.com.cn/WebServices/WeatherWS.asmx Disco: ...

  3. MyBatis映射

    mybatis-config.xml映射文件 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE ...

  4. 【DRF序列化】

    目录 基本的序列化操作 外键/多对多关系的序列化 反序列化的操作 单条数据查询及更新 数据的校验 单个字段的校验 多个字段的校验 自定义校验器 终极用法 ModelSerializer 前后端分离后, ...

  5. mvc定时执行任务(获取气象台的气象数据,定时新增)

    1.定时任务: gloabl.asax文件Application_Start()方法注册: System.Timers.Timer t = new System.Timers.Timer(theInt ...

  6. iOS报错 -pie can only be used when targeting iOS 4.2 or later

    近期,使用师兄的project时.突然报错之前没发现这个错误.信息例如以下: ld: -pie can only be used when targeting iOS 4.2 or later cla ...

  7. POJ 3461 Oulipo KMP算法题解

    本题就是给出非常多对字符串,然后问一个字符串在另外一个字符串出现的次数. 就是所谓的Strstr函数啦. Leetcode有这道差点儿一模一样的题目. 使用KMP算法加速.算法高手必会的算法了. 另外 ...

  8. libev环境

    wget https://download.libsodium.org/libsodium/releases/libsodium-1.0.13.tar.gz tar xzvf libsodium-1. ...

  9. js36---函数嵌套

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...

  10. (转)Tomcat调优

    问题定位 对于Tomcat的处理耗时较长的问题主要有当时的并发量.session数.内存及内存的回收等几个方面造成的.出现问题之后就要进行分析了. 1.关于Tomcat的session数目 这个可以直 ...