CS224d lecture 9札记
欢迎转载。转载注明出处:
http://blog.csdn.net/neighborhoodguo/article/details/47193885
近期几课的内容不是非常难。还有我的理解能力有所提高(自恋一下)。所以这几课完毕的都挺快。不知不觉lec9也完毕了。这一讲讲了还有一个RNN,当中R是Recursive不是之前的Recurrent。
课上老师使用Recursive NN来做NLP和CV的任务,我个人觉得做CV还是不错的。这个NLP怎么感觉有点不靠谱。无论怎么说这个model还是攻克了非常多实际问题的。并且性能也不错,如今就来记录记录喽。
首先来梳理一下这一课讲得内容吧。首先讲了怎样把一个sentence进行vector表示,再是怎样进行parsing,然后是构建object function的方法max-margin以及BPTS(Backpropagation Through Structure)。最后是Recursive NN的几个改良版还有这个model也能够进行computer vision的工作。
1.Semantic Vector Space for sentence
类似上一阶段的word vector space这次我们是将一整个sentence投影到semantic vector spaces中。
我们的模型是基于这样两个如果:一个句子的意思是基于1.这个句子所包括单词的意思;2.这个句子的构建方式。当中第二点还在争论中,我们这一讲讨论的模型能够同一时候完毕两个任务,第一能够学出来这个句子的tree模型,第二能够学出来这个句子在semantic vector space里的表示。
Parsing tree是什么呢?上图:

当中上面那个图就是在这一讲里所述的parsing tree。而上一讲的recurrent neural networks事实上类似以下的parsing tree它被视作是上一种parsing tree的特殊表示方式。
这两种表示方法究竟哪个正确如今还没有定论(still cognitively debatable)
如何学出来这个parsing tree呢?聪明的人类发明了一个方法叫beam search就是bottom-up的方法。从最低下開始,计算哪两个成为好基友的score最大,然后取出来最大的score的俩个node然后他俩就merge了(好邪恶)。最后一直到最上面所有都merge起来了就形成了一个parsing tree。
2.objection function?Max-margin framework
slide里的objection function我之后參阅了recommand reading里的object function发现不一样正负号是反的。
我推測是不是老师写得时候给写反了??

论文里给出的object function是这种。当中delta(yi, y_hat)是依据标记错误的node数量再乘以一个k得出的:

score有两个部分:

前半段的v是要通过我们的model学习出来的,后半段是log probability of the PCFG也就是这玩意发生的概率并转成log space下。
课上讲得max-margin不太具体。第二篇论文里面讲得挺好。这里摘抄出来:


最后得到max-margin的公式。我们的目的是使得c(w)最小
这样为什么就是最优的呢,我想了半天才想出来这里用通俗点的话记录一下:假设w不是最优的w那么max()里左边的score选出来的不是y_i,再加上L_i那么终于肯定是ri非常大,必定不是最小的。假设w是最优的呢?那肯定max()选出来的是yi。delta肯定为零。然后整体必定最小。这种w必定使得score(y_i)比其它全部的score(y)大,而且大出来一个L_i(y)的margin。
3.BPTS
BPTS论文里讲得比較少。slide里讲得还挺具体还有pset2的部分代码还是不错滴。
BPTS和之前的传统BP有三个差别:

第一点是说求w的gradient要sum全部node的;第二点我感觉是用来更新semantic vector space里的vector的。第三点还要加一个error message:Total error messages = error messages from parent + error message from own score
BPTS的parameters更新的改进方法能够调整learning rate或者使用subgradient(使用subgradient的方法论文里有讲,cs229里也有将一个smo方法比較类似)
4.Recursive NN的改良版
前半段讲得都是最简单的simple RNN。
最后讲了一个改良版的SU-RNN(syntactically-untied RNN)
也就是weight依据children的type的不同而进行不同的选择。
最后有一个CV的展示,就是说RNN对于NLP的操作和CV差点儿相同都是一步一步分解。
Website:
nlp.stanford.edu
http://repository.cmu.edu/robotics
www.socher.org
CS224d lecture 9札记的更多相关文章
- 【转载】 深度学习与自然语言处理(1)_斯坦福cs224d Lecture 1
版权声明:本文为博主原创文章,未经博主允许不得转载. 原文地址http://blog.csdn.net/longxinchen_ml/article/details/51567960 目录(?)[- ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- DL4NLP——词表示模型(二)基于神经网络的模型:NPLM;word2vec(CBOW/Skip-gram)
本文简述了以下内容: 神经概率语言模型NPLM,训练语言模型并同时得到词表示 word2vec:CBOW / Skip-gram,直接以得到词表示为目标的模型 (一)原始CBOW(Continuous ...
- TensorFlow 中文资源全集,官方网站,安装教程,入门教程,实战项目,学习路径。
Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目, ...
- 神经网络训练tricks
神经网络构建好,训练不出好的效果怎么办?明明说好的拟合任意函数(一般连续)(为什么?可以参考http://neuralnetworksanddeeplearning.com/),说好的足够多的数据(h ...
- 机器学习算法实现解析——word2vec源代码解析
在阅读本文之前,建议首先阅读"简单易学的机器学习算法--word2vec的算法原理"(眼下还没公布).掌握例如以下的几个概念: 什么是统计语言模型 神经概率语言模型的网络结构 CB ...
- Awesome TensorFlow
Awesome TensorFlow A curated list of awesome TensorFlow experiments, libraries, and projects. Inspi ...
- TensorFlow 中文资源精选,官方网站,安装教程,入门教程,实战项目,学习路径。
Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目, ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
随机推荐
- phpcms v9会员推荐位
模版显示推荐会员代码 <div class="zhanxun2"> <div class="title"> ...
- delphi网络函数大全
{=========================================================================功 能: 网络函数库时 间: 2002/10/02版 ...
- js中Json字符串如何转成Json对象(4种转换方式)
js中Json字符串如何转成Json对象(4种转换方式) 一.总结 一句话总结:原生方法(就是浏览器默认支持的方法) 浏览器支持的转换方式(Firefox,chrome,opera,safari,ie ...
- nyoj--116--士兵杀敌(二)(树状数组)
士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军经常想知 ...
- Webfont 的兼容性问题[持续更新]
低版安卓手机的 webview 显示不了,另外黑莓手机显示出来是这样: 生成工具: 离线字体生成工具:webfont 在线字体生成平台:icomoon.io, iconfont.cn均有问题 其他一些 ...
- IT男送什么礼物给女朋友呢?
每到各种节日,加班到吐血的IT男们,总是没什么时间准备礼物给女朋友,偶尔想起又不知道送什么的好,女朋友虽然心里不说,多少有些难过.现在推荐朋友的羊毛毡手工店,每一件都是亲手制作,特别是可以个性定制,女 ...
- BootStrap--panel面板
1 <div class="panel panel-default"> <div class="panel-body"> 这是一个基本的 ...
- codeforces 527 C Glass Carving
Glass Carving time limit per test 2 seconds Leonid wants to become a glass carver (the person who cr ...
- Mac上vmware虚拟机Windows10安装JDK8及配置环境
1.jdk8下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 2.双击下载的jdk进行安装 3.安装成功之 ...
- vue实现文字上下滚动
实现文字的上下滚动使用positon的relative的top属性,通过动态改变top来实现相关内容的更换,通过transion来实现相关的动画效果, 相关的dom内容 <template> ...