POJ 1966 求无向图点连通度
思路:
n^2枚举(必须要n^2枚举啊)+拆点
特此嘲讽网上诸多垃圾题解,你们许多都是错的 —yyh
//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 5555
int n,m,xx,yy,inf=0x3fffff,ans,ed=105;
struct Node{int x,y;}point[N];
struct Dinic{
int first[107],next[N],v[N],w[N],tot,vis[107];
void solve(int x,int y){
memset(first,-1,sizeof(first)),tot=0;
add(0,x,inf),add(x,x+n,inf),add(y,y+n,inf),add(y+n,105,inf);
for(int i=1;i<=n;i++)add(i,i+n,1);
for(int i=1;i<=m;i++)add(point[i].x+n,point[i].y,inf),add(point[i].y+n,point[i].x,inf);
ans=min(ans,x=flow());
}
void add(int x,int y,int z){Add(x,y,z),Add(y,x,0);}
void Add(int x,int y,int z){w[tot]=z,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
bool tell(){
memset(vis,-1,sizeof(vis)),vis[0]=0;
queue<int>q;q.push(0);
while(!q.empty()){
int t=q.front();q.pop();
for(int i=first[t];~i;i=next[i])
if(vis[v[i]]==-1&&w[i])
vis[v[i]]=vis[t]+1,q.push(v[i]);
}
return vis[ed]!=-1;
}
int zeng(int x,int y){
if(x==ed)return y;
int r=0;
for(int i=first[x];~i&&y>r;i=next[i])
if(vis[v[i]]==vis[x]+1&&w[i]){
int t=zeng(v[i],min(y-r,w[i]));
w[i]-=t,w[i^1]+=t,r+=t;
}
if(!r)vis[x]=-1;
return r;
}
int flow(){
int jy=0,tmp;
while(tell())while(tmp=zeng(0,inf))jy+=tmp;
return jy;
}
}dinic;
int main(){
while(~scanf("%d%d",&n,&m)){
ans=inf;
for(int i=1;i<=m;i++){
scanf(" (%d,%d)",&point[i].x,&point[i].y);
point[i].x++,point[i].y++;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j)dinic.solve(i,j);
if(ans==inf)printf("%d\n",n);
else printf("%d\n",ans);
}
}
POJ 1966 求无向图点连通度的更多相关文章
- poj 1966(求点连通度,边连通度的一类方法)
题目链接:http://poj.org/problem?id=1966 思路:从网上找了一下大牛对于这类问题的总结:图的连通度问题是指:在图中删去部分元素(点或边),使得图中指定的两个点s和t不连通 ...
- poj 3895(求无向图的最大简单环)
题目链接:http://poj.org/problem?id=3895 思想很简单,就是dfs,并且用一个数组记录到该节点所走过的长度,然后如果遇到已经走过的,就说明存在环了, 更新一下ans. /* ...
- POJ 1144 Network(无向图连通分量求割点)
题目地址:id=1144">POJ 1144 求割点.推断一个点是否是割点有两种推断情况: 假设u为割点,当且仅当满足以下的1条 1.假设u为树根,那么u必须有多于1棵子树 2.假设u ...
- POJ 1966
求的是无向图的点连通度.开始便想到网络流,既然选的是点,当然就要拆点加边了.但无论如何也不敢往枚举源汇点的方向想,因为网络流复习度很高.看看网上大牛的,都是枚举,再看数据,原来N才50个点,枚举无压力 ...
- FZU 2090 旅行社的烦恼 floyd 求无向图最小环
题目链接:旅行社的烦恼 题意是求无向图的最小环,如果有的话,输出个数,并且输出权值. 刚刚补了一发floyd 动态规划原理,用了滑动数组的思想.所以,这个题就是floyd思想的变形.在k从1到n的过程 ...
- Tarjan求无向图割点、桥详解
tarjan算法--求无向图的割点和桥 一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不 ...
- tarkjan求无向图割点模板
#include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m; ; ; struct node { ...
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
- [Tarjan系列] Tarjan算法求无向图的桥和割点
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...
随机推荐
- ztree实现根节点单击事件,显示节点信息
这段时间在维护公司的项目,去年做的项目里面有ztree树的例子,想起之前还没有开始写博客,一些知识点也无从找起,要新加一个右击节点事件,折腾了半天,其中也包含了一些知识点,稍稍做了一些demo. zT ...
- phpstorm 激活方法
1.本地破解激活(推荐) 下载JetbrainsCrack-2.5.6.jar 链接: http://pan.baidu.com/s/1miPpE2k 密码: w3yc 放到phpstorm安装目录下 ...
- js中如何取精度
js中如何取精度 一.总结 一句话总结:其实round()函数去经度会有误差,直接用num.toFixed(2)简单方便. toFixed()方法会按照指定的小数返回数值的字符串表示.var num ...
- js中Json字符串如何转成Json对象(4种转换方式)
js中Json字符串如何转成Json对象(4种转换方式) 一.总结 一句话总结:原生方法(就是浏览器默认支持的方法) 浏览器支持的转换方式(Firefox,chrome,opera,safari,ie ...
- hdoj--2138--How many prime numbers(暴力模拟)
How many prime numbers Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- 2015合肥网络赛 HDU 5489 Removed Interval LIS+线段树(树状数组)
HDU 5489 Removed Interval 题意: 求序列中切掉连续的L长度后的最长上升序列 思路: 从前到后求一遍LIS,从后往前求一遍LDS,然后枚举切开的位置i,用线段树维护区间最大值, ...
- Error creating bean with name 'testController': Injection of resource dependencies failed;
启动ssm项目报错: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 't ...
- VS 代码打包工具
源代码下载地址 https://github.com/loresoft/msbuildtasks
- AD域导入导出命令
AD域 批量组织机构.用户导入导出 参考网站 https://technet.microsoft.com/zh-cn/library/cc753447(v=ws.11).aspx 导入所有命令 均cm ...
- atom玩法
1.先用 git 下载一个 react-devtools: $ cd /some-directory$ git clone --recursive https://github.com/faceboo ...