题目:https://www.luogu.org/problemnew/show/P3515

决策单调性...

参考TJ:https://www.cnblogs.com/CQzhangyu/p/7258256.html

注释WA???最近似乎总是WA在二分上...

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int const maxn=5e5+;
int n,a[maxn],ans[maxn],h,t;
struct N{
double p,l,r;
N(int p=,int l=,int r=):p(p),l(l),r(r) {}
}q[maxn];
double calc(int i,int j){return a[i]+sqrt(abs(j-i))-a[j];}//i对j的答案
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=,h=,t=;i<=n;i++)
{
while(h<=t&&q[h].r<i)h++;
if(h<=t)q[h].l=i,ans[i]=max(ans[i],(int)ceil(calc(q[h].p,i)));
if(h>t||calc(i,n)>calc(q[t].p,n))
{
while(h<=t&&calc(i,q[t].l)>calc(q[t].p,q[t].l))t--;
if(h<=t)
{
// int l=q[t].l,r=q[t].r,ret;
// while(l<=r)
// {
// int mid=((l+r)>>1);
// if(calc(i,mid)>=calc(q[t].p,mid))ret=mid,r=mid-1;
// else l=mid+1;
// }
// q[t].l=ret-1; q[++t]=N(i,ret,n);
int l=q[t].l,r=q[t].r+;
while(l<r)
{
int mid=((l+r)>>);
if(calc(i,mid)<calc(q[t].p,mid))l=mid+;
else r=mid;
}
q[t].r=l-; q[++t]=N(i,l,n);
}
else q[++t]=N(i,i+,n);
}
}
for(int i=n,h=,t=;i;i--)
{
while(h<=t&&q[h].l>i)h++;
if(h<=t)q[h].r=i,ans[i]=max(ans[i],(int)ceil(calc(q[h].p,i)));
if(h>t||calc(i,)>calc(q[t].p,))//
{
while(h<=t&&calc(i,q[t].r)>calc(q[t].p,q[t].r))t--;
if(h<=t)
{
// int l=q[t].l,r=q[t].r,ret;
// while(l<=r)
// {
// int mid=((l+r)>>1);
// if(calc(i,mid)>calc(q[t].p,mid))ret=mid,r=mid-1;
// else l=mid+1;
// }
// q[t].l=ret+1; q[++t]=N(i,1,ret);
int l=q[t].l,r=q[t].r;
while(l<r)
{
int mid=((l+r)>>);
if(calc(i,mid)<calc(q[t].p,mid))r=mid;
else l=mid+;
}
q[t].l=r; q[++t]=N(i,,r-);
}
else q[++t]=N(i,,i-);
}
}
for(int i=;i<=n;i++)printf("%d\n",ans[i]);
return ;
}

洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP的更多相关文章

  1. LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP

    传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...

  2. 【洛谷3515】[POI2011] Lightning Conductor(决策单调性)

    点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt ...

  3. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  4. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  5. 洛谷P1973 [NOI2011]Noi嘉年华(决策单调性)

    传送门 鉴于FlashHu大佬讲的这么好(而且我根本不会)我就不再讲一遍了->传送 //minamoto #include<iostream> #include<cstdio& ...

  6. 洛谷P3724 [AH2017/HNOI2017]大佬(决策单调性)

    传送门 这个思路很妙诶->这里 以下为了方便,我把自信说成血量好了 虽然表面上看起来每一天有很多种选择,然而我们首先要保证的是不死,然后考虑不死的情况下最多能拿出多少天来进行其他操作.不死可以d ...

  7. BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性

    BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...

  8. 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP

    洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...

  9. 洛谷 P3580 - [POI2014]ZAL-Freight(单调队列优化 dp)

    洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置 ...

随机推荐

  1. Mongodb——文档数据库

    mongodb是一个文档数据库. mongo操作 多个修改操作,但每个修改携带的数据包较小,可操作考虑批量操作.bulkWrite()改善性能. MongoCollection是线程安全的. db.c ...

  2. 使用码云gitee.com托管代码

    1.新建项目 可以看到团队资源管理器是这样的,已经在本地有存储库,所有更改可以保存本地 2.在码云上新建项目 项目名称必填,其它项根据情况填写 3.复制项目地址关联到本地存储库 填写码云的项目地址,发 ...

  3. The Standard SSL Handshake

    The following is a standard SSL handshake when RSA key exchange algorithm is used: 1.  Client Hello ...

  4. C# 金钱添加逗号0000

    private void Form1_Load(object sender, EventArgs e) { decimal dd = (decimal)11234567890.01; string d ...

  5. hint: not have locally. This is usually caused by another repository pushing

    git 提交代码前先pull代码,否则会报如下错误 wangju@wangju-HP-348-G4:~/test/reponselogiccheck$ git statusOn branch mast ...

  6. 【实战】用request爬取拉勾网职位信息

    from urllib import request import urllib import ssl import json url = 'https://www.lagou.com/jobs/po ...

  7. 解决windows64位系统上安装mysql-python报错

    解决windows64位系统上安装mysql-python报错 2018年03月12日 13:08:24 一个CD包 阅读数:1231    版权声明:本文为博主原创文章,未经博主允许不得转载. ht ...

  8. 【LeetCode】4、Median of Two Sorted Arrays

    题目等级:Hard 题目描述:   There are two sorted arrays nums1 and nums2 of size m and n respectively.   Find t ...

  9. pandas.DataFrame.rank

        原文:https://www.cnblogs.com/sunbigdata/p/7874581.html pandas.DataFrame.rank DataFrame.rank(axis=0 ...

  10. ModelBinder 请求容错性

    代码 //using System.Web.Mvc; public class TrimToDBCModelBinder : DefaultModelBinder { public override ...