洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515
决策单调性...
参考TJ:https://www.cnblogs.com/CQzhangyu/p/7258256.html
注释WA???最近似乎总是WA在二分上...
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int const maxn=5e5+;
int n,a[maxn],ans[maxn],h,t;
struct N{
double p,l,r;
N(int p=,int l=,int r=):p(p),l(l),r(r) {}
}q[maxn];
double calc(int i,int j){return a[i]+sqrt(abs(j-i))-a[j];}//i对j的答案
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=,h=,t=;i<=n;i++)
{
while(h<=t&&q[h].r<i)h++;
if(h<=t)q[h].l=i,ans[i]=max(ans[i],(int)ceil(calc(q[h].p,i)));
if(h>t||calc(i,n)>calc(q[t].p,n))
{
while(h<=t&&calc(i,q[t].l)>calc(q[t].p,q[t].l))t--;
if(h<=t)
{
// int l=q[t].l,r=q[t].r,ret;
// while(l<=r)
// {
// int mid=((l+r)>>1);
// if(calc(i,mid)>=calc(q[t].p,mid))ret=mid,r=mid-1;
// else l=mid+1;
// }
// q[t].l=ret-1; q[++t]=N(i,ret,n);
int l=q[t].l,r=q[t].r+;
while(l<r)
{
int mid=((l+r)>>);
if(calc(i,mid)<calc(q[t].p,mid))l=mid+;
else r=mid;
}
q[t].r=l-; q[++t]=N(i,l,n);
}
else q[++t]=N(i,i+,n);
}
}
for(int i=n,h=,t=;i;i--)
{
while(h<=t&&q[h].l>i)h++;
if(h<=t)q[h].r=i,ans[i]=max(ans[i],(int)ceil(calc(q[h].p,i)));
if(h>t||calc(i,)>calc(q[t].p,))//
{
while(h<=t&&calc(i,q[t].r)>calc(q[t].p,q[t].r))t--;
if(h<=t)
{
// int l=q[t].l,r=q[t].r,ret;
// while(l<=r)
// {
// int mid=((l+r)>>1);
// if(calc(i,mid)>calc(q[t].p,mid))ret=mid,r=mid-1;
// else l=mid+1;
// }
// q[t].l=ret+1; q[++t]=N(i,1,ret);
int l=q[t].l,r=q[t].r;
while(l<r)
{
int mid=((l+r)>>);
if(calc(i,mid)<calc(q[t].p,mid))r=mid;
else l=mid+;
}
q[t].l=r; q[++t]=N(i,,r-);
}
else q[++t]=N(i,,i-);
}
}
for(int i=;i<=n;i++)printf("%d\n",ans[i]);
return ;
}
洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP的更多相关文章
- LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP
传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...
- 【洛谷3515】[POI2011] Lightning Conductor(决策单调性)
点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt ...
- P3515 [POI2011]Lightning Conductor[决策单调性优化]
给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
- 洛谷P1973 [NOI2011]Noi嘉年华(决策单调性)
传送门 鉴于FlashHu大佬讲的这么好(而且我根本不会)我就不再讲一遍了->传送 //minamoto #include<iostream> #include<cstdio& ...
- 洛谷P3724 [AH2017/HNOI2017]大佬(决策单调性)
传送门 这个思路很妙诶->这里 以下为了方便,我把自信说成血量好了 虽然表面上看起来每一天有很多种选择,然而我们首先要保证的是不死,然后考虑不死的情况下最多能拿出多少天来进行其他操作.不死可以d ...
- BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性
BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...
- 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP
洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...
- 洛谷 P3580 - [POI2014]ZAL-Freight(单调队列优化 dp)
洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置 ...
随机推荐
- JS——对象创建
1.原始创建 <script> person = new Object();//不要var person.firstname = "Bill"; person.last ...
- JS——Boolean(逻辑)对象
Boolean(逻辑)对象用于将非逻辑值转换为逻辑值(true 或者 false). 创建 Boolean 对象的语法: new Boolean(value); //构造函数 Boolean(valu ...
- VMware 11安装Mac OS X 10.10 及安装Mac Vmware Tools.
先上一张效果图兴奋一下,博主穷屌丝一个,只能通过虚拟黑苹果体验下高富帅的生活,感觉超爽的,废话不多说的,直接上图了! 目录: 1.安装所需软件下载: 2.Mac OS X10.10 安装基本步骤: 3 ...
- Linux监控实时log
https://jingyan.baidu.com/article/93f9803f5545a3e0e46f5596.html
- Linux 查询PID和端口号
https://www.cnblogs.com/understander/p/5546458.html
- (转)postgis常用函数介绍(二)
http://blog.csdn.net/gisshixisheng/article/details/47903151 概述: 书接上文,本文继续讲解Postgres中常用的空间函数的使用. 常用函数 ...
- How To:使用dmidecode获取机器序列号(Serial number)
使用dmidecode可以获取关于机器的诸多信息,比如机器的序列号 [root@dc1db01 ~]# dmidecode -s system-serial-number processor的 ...
- MarkDown 语法及使用
MarkDown #什么是Markdown - 定义 - markdown 是一款轻量级标记语言,功能没有HTML标记语言那么强大 ,Markdown专注书写! #试用人群: 程序员/等计算机爱好者 ...
- unigui的菜单树补习【2】treeview
Treeview用于显示按照树形结构进行组织的数据. Treeview控件中一个树形图由节点(TreeNode)和连接线组成.TtreeNode是TTreeview的基本组成单元. ...
- RestEasy 用户指南----第7章 @HeaderParam
转载说明出处:http://blog.csdn.net/nndtdx/article/details/6870391 原文地址 http://docs.jboss.org/resteasy/docs/ ...