[题目链接]

https://www.lydsy.com/JudgeOnline/problem.php?id=1833

[算法]

数位DP

[代码]

#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#include <stack>
#include <limits.h>
using namespace std; int i;
long long a,b;
long long f[][][]; inline void dp(long long m)
{
long long i,j,k,x;
memset(f,,sizeof(f));
f[][][] = ;
for (i = ; i <= ; i++)
{
for (j = ; j <= ; j++)
{
for (k = ; k <= i; k++)
{
if (j != m)
{
for (x = ; x <= ; x++)
f[i][j][k] += f[i - ][x][k];
} else if (k >= )
{
for (x = ; x <= ; x++)
f[i][j][k] += f[i - ][x][k - ];
}
}
}
}
}
inline long long calc(long long x,long long t)
{
long long i,j,k,len = ;
long long res = ;
long long cnt = ;
long long a[];
memset(a,,sizeof(a));
while (x != )
{
a[++len] = x % ;
x /= ;
}
reverse(a + ,a + len + );
for (i = ; i <= len; i++)
{
for (j = ; j <= ; j++)
{
for (k = ; k <= len - i + ; k++)
res += f[len - i + ][j][k] * k;
}
}
for (i = ; i <= len; i++)
{
for (j = ; j < a[i]; j++)
{
if (i == && !j) continue;
for (k = cnt; k <= len; k++)
{
res += f[len - i + ][j][k - cnt] * k;
}
}
if (a[i] == t) cnt++;
}
return res;
} int main()
{ while (scanf("%lld%lld",&a,&b) && (a || b))
{
if (a > b) swap(a,b);
for (i = ; i < ; i++)
{
dp(i);
printf("%lld ",calc(b + ,i) - calc(a,i));
}
dp();
printf("%lld\n",calc(b + ,) - calc(a,));
} return ; }

[ZJOI 2010] 数字计数的更多相关文章

  1. [ZJOI 2010] 排列计数

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2111 [算法] 一种比较好的理解方式是将该序列看成是一棵堆式存储的二叉树 那么问题转 ...

  2. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  3. [BZOJ1833][ZJOI2010]count 数字计数

    [BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...

  4. BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...

  5. BZOJ 1833: [ZJOI2010]count 数字计数( dp )

    dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...

  6. 1833: [ZJOI2010]count 数字计数

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2951  Solved: 1307[Submit][ ...

  7. BZOJ_1833_[ZJOI2010]count 数字计数_数位DP

    BZOJ_1833_[ZJOI2010]count 数字计数_数位DP 题意: 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 分析: 数位DP f[i][ ...

  8. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  9. 【洛谷】2602: [ZJOI2010]数字计数【数位DP】

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...

随机推荐

  1. android黑科技系列——Wireshark和Fiddler分析Android中的TLS协议包数据(附带案例样本)

    一.前言 在之前一篇文章已经介绍了一款网络访问软件的破解教程,当时采用的突破口是应用程序本身的一个漏洞,就是没有关闭日志信息,我们通过抓取日志获取到关键信息来找到突破口进行破解的.那篇文章也说到了,如 ...

  2. android 国际化 横屏(land) 竖屏(port)margin外边距和padding内边距

    android 国际化 横屏(land) 竖屏(port) 边距又分为内边距和外边距,即margin和padding.

  3. SQL Server之十大存储过程

    下面介绍十大不同类型存储过程. 用户自定义存储过程 . 创建语法 create proc | procedure pro_name [{@参数数据类型} [=默认值] [output], {@参数数据 ...

  4. PHP执行Mysql数据库的备份和还原

    使用mysqldump命令备份 mysqldump命令将数据库中的数据备份成一个文本文件.表的结构和表中的数据将存储在生成的文本文件中. mysqldump命令的工作原理很简单.它先查出需要备份的表的 ...

  5. (转)基于MVC4+EasyUI的Web开发框架经验总结(9)--在Datagrid里面实现外键字段的转义操作

    http://www.cnblogs.com/wuhuacong/p/3872890.html 我们在使用EasyUI的时候,很多情况下需要使用到表格控件datagrid,这个控件控件非常强大,使用起 ...

  6. Redis-RDB持久化设置

    1.如何配置RDB持久化机制redis.conf文件,也就是/etc/redis/6379.conf,去配置持久化 save 60 1000 每隔60s,如果有超过1000个key发生了变更,那么就生 ...

  7. @dalao help!!!

  8. 高举 Vue-SSR

    将同一个组件渲染为服务器端的 HTML 字符串,将它们直接发送到浏览器,最后将静态标记"混合"为客户端上完全交互的应用程序. SSR的目的 To solve 首屏渲染问题 SEO问 ...

  9. 继续聊WPF——为ListView的行设置样式

    <Window x:Class="Wpf_GridHeaderStyle_sample.Window1" xmlns="http://schemas.microso ...

  10. Codeforces 899C - Dividing the numbers

    传送门:http://codeforces.com/contest/899/problem/C 本题是一个数学问题——集合划分. 将集合{1,2,...,n}划分成两个集合,使得两个集合的元素之和的绝 ...