nditer —— numpy.ndarray 多维数组的迭代
1. Single array iteration
>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a):
... print x,
...
0 1 2 3 4 5
- 也即默认是行序优先(row-major order,或者说是 C-order),这样迭代遍历的目的在于,实现和内存分布格局的一致性,以提升访问的便捷性;
>>> for x in np.nditer(a.T):
... print x,
...
0 1 2 3 4 5
>>> for x in np.nditer(a.T.copy(order='C')):
... print x,
...
0 3 1 4 2 5
- 也即对
a和a.T的遍历执行的是同意顺序,也即是它们在内存中的实际存储顺序。
2. 控制遍历顺序
for x in np.nditer(a, order='F'):Fortran order,也即是列序优先;for x in np.nditer(a.T, order='C'):C order,也即是行序优先;
3. 修改数组中元素的值
默认情况下,nditer将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值得修改,必须指定 read-write 或者 write-only的模式。
>>> a
array([[0, 1, 2],
[3, 4, 5]])
>>> for x in np.nditer(a, op_flags=['readwrite']):
... x[...] = 2 * x
...
>>> a
array([[ 0, 2, 4],
[ 6, 8, 10]])
4. 使用外部循环
将一维的最内层的循环转移到外部循环迭代器,使得 numpy 的矢量化操作在处理更大规模数据时变得更有效率。
>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, flags=['external_loop']):
... print x,
...
[0 1 2 3 4 5]
>>>
>>> for x in np.nditer(a, flags=['external_loop'], order='F'):
... print x,
...
[0 3] [1 4] [2 5]
5. 追踪单个索引或多重索引(multi-index)
>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],
[3, 4, 5]])
>>> it = np.nditer(a, flags=['f_index'])
>>> while not it.finished:
... print "%d <%d>" % (it[0], it.index),
... it.iternext()
...
0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>
# 索引的编号,以列序优先
>>> it = np.nditer(a, flags=['multi_index'])
>>> while not it.finished:
... print "%d <%s>" % (it[0], it.multi_index),
... it.iternext()
...
0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>
references
nditer —— numpy.ndarray 多维数组的迭代的更多相关文章
- NumPy之:ndarray多维数组操作
NumPy之:ndarray多维数组操作 目录 简介 创建ndarray ndarray的属性 ndarray中元素的类型转换 ndarray的数学运算 index和切片 基本使用 index wit ...
- Numpy 笔记: 多维数组的切片(slicing)和索引(indexing)【转】
目录 切片(slicing)操作 索引(indexing) 操作 最简单的情况 获取多个元素 切片和索引的同异 切片(slicing)操作 Numpy 中多维数组的切片操作与 Python 中 lis ...
- Python数据分析 | Numpy与1维数组操作
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/33 本文地址:http://www.showmeai.tech/article-det ...
- 初识numpy的多维数组对象ndarray
PS:内容来源于<利用Python进行数据分析> 一.创建ndarray 1.array :将一个序列(嵌套序列)转换为一个数组(多维数组) In[2]: import numpy as ...
- NumPy 之 ndarray 多维数组初识
why 回顾我的数据分析入门, 最开始时SPSS+EXCEL,正好15年初是上大一下的时候, 因为统计学的还蛮好的, SPSS傻瓜式操作,上手挺方便,可渐渐地发现,使用软件的最不好的地方是不够灵活, ...
- numpy中多维数组的绝对索引
这涉及到吧多维数组映射为一维数组. 对于3维数组,有公式: def MAP(x,y,z): return y_s * z_s * x + z_s * y + z 此公式可以推广到N维 测试代码:(两个 ...
- 利用numpy实现多维数组操作图片
1.上次介绍了一点点numpy的操作,今天我们来介绍它如何用多维数组操作图片,这之前我们要了解一下色彩是由blue ,green ,red 三种颜色混合而成,0:表示黑色 ,127:灰色 ,255:白 ...
- python中numpy库ndarray多维数组的的运算:np.abs(x)、np.sqrt(x)、np.modf(x)等
numpy库提供非常便捷的数组运算,方便数据的处理. 1.数组与标量之间可直接进行运算 In [45]: aOut[45]:array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ ...
- NumPy之:多维数组中的线性代数
目录 简介 图形加载和说明 图形的灰度 灰度图像的压缩 原始图像的压缩 总结 简介 本文将会以图表的形式为大家讲解怎么在NumPy中进行多维数据的线性代数运算. 多维数据的线性代数通常被用在图像处理的 ...
随机推荐
- SpringMVC学习记录(五)--表单标签
在使用SpringMVC的时候我们能够使用Spring封装的一系列表单标签,这些标签都能够訪问到ModelMap中的内容. 以下将对这些标签一一介绍. 1.引入标签头文件 在正式介绍SpringMVC ...
- Datasets for MachineLearning
Public datasets for machine learning http://homepages.inf.ed.ac.uk/rbf/IAPR/researchers/MLPAGES/mld ...
- LA 3887 - Slim Span 枚举+MST
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 1 Spring Cloud Eureka服务治理(上)
注:此随笔为读书笔记.<Spring Cloud微服务实战>,想学习Spring Cloud的同伴们可以去看看此书,里面对源码有详细的解读. 什么是微服务? 微服务是将一个原本独立的系统拆 ...
- 学习jquery.pagewalkthroung.js插件记录点
1.53行:options = $.extend(true, {}, $.fn.pagewalkthrough.defaults, options); $.extend的作用是把第二个对象合并到第一个 ...
- bootstrap+fileinput插件实现可预览上传照片功能
实际项目中运用: 功能:实现上传图片,更改上传图片,移除图片的功能 <!DOCTYPE html> <html> <head> <meta charset=& ...
- LUA凝视语法
server端代码已经完毕,client正在优化.游戏不久将上线,近期没事做,老大要我開始学习project Anarchy了.里面代码是比較偏爱的C++,包括lua,暂没学过lua.看了下LUA代码 ...
- Behavioral模式之Memento模式
1.意图 在不破坏封装性的前提下,捕获一个对象的内部状态.并在该对象之外保存这个状态,这样以后就可将该对象恢复到原先保存的状态. 2.别名 Token 3.动机 有时候有必要记录一个对象的内部状态.为 ...
- ArcGIS Runtime支持的GP工具列表(转 )
转自原文 ArcGIS Runtime支持的GP工具列表(转 ) 目前ArcGIS Runtime有两个版本 Basic 版本和Standard版本,而Basic版本不支持Geoprocessing( ...
- 以Network Dataset(网络数据集)方式实现的最短路径分析
转自原文 以Network Dataset(网络数据集)方式实现的最短路径分析 构建网络有两种方式,分别是网络数据集NetworkDataset和几何网络Geometric Network,这个网络结 ...