职务地址:HDU 2842

这个游戏是一个九连环的游戏。

如果当前要卸下前n个环。由于要满足前n-2个都卸下,所以要先把前n-2个卸下。须要f(n-2)次。然后把第n个卸下须要1次,然后这时候要卸下第n-1个。然后此时前n-2个都已经被卸下了。这时候把前n-2个都卸下与都装上所需的次数是一样的。由于卸下与装上的规则是一样的。

所以又须要f(n-2)次。这时候前n-1个都在上面,卸下前n-1个须要f(n-1)次。

所以。总共须要2*f(n-2)+f(n-1)+1次。

然后构造例如以下矩阵。

1,2,1

1,0,0

0,0,1

*

f(n-1)

f(n-2)

1

=

f(n)

f(n-1)

1;

然后用矩阵高速幂求解。

代码例如以下:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm> using namespace std;
#define LL __int64
const int mod=200907;
struct matrix
{
LL ma[4][4];
}init, res;
matrix Mult(matrix x, matrix y)
{
matrix tmp;
int i, j, k;
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
tmp.ma[i][j]=0;
for(k=0;k<3;k++)
{
tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
}
}
}
return tmp;
}
matrix Pow(matrix x, int k)
{
matrix tmp;
int i, j;
for(i=0;i<3;i++) for(j=0;j<3;j++) tmp.ma[i][j]=(i==j);
while(k)
{
if(k&1) tmp=Mult(tmp,x);
x=Mult(x,x);
k>>=1;
}
return tmp;
}
int main()
{
int k, i, j;
while(scanf("%d",&k)!=EOF&&k)
{
if(k==1)
{
printf("1\n");
continue ;
}
init.ma[0][0]=1;
init.ma[0][1]=2;
init.ma[0][2]=1;
init.ma[1][0]=1;
init.ma[1][1]=0;
init.ma[1][2]=0;
init.ma[2][0]=0;
init.ma[2][1]=0;
init.ma[2][2]=1;
res=Pow(init,k-2);
LL ans;
ans=(2*res.ma[0][0]+res.ma[0][1]+res.ma[0][2])%mod;
printf("%I64d\n",ans);
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

HDU 2842 Chinese Rings(矩阵高速功率+递归)的更多相关文章

  1. hdu 2842 Chinese Rings 矩阵快速幂

    分析: 后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响.所以先取最后面的环 设状态F(n)表示n个环全部取下来的最少步数 先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1 ...

  2. HDU 2842 Chinese Rings(常数矩阵)

    Chinese Rings 转载自:点这里 [题目链接]Chinese Rings [题目类型]常数矩阵 &题意: 一种中国环,解开第k个环需要先解开全部的前(k-2)个环,并留有第(k-1) ...

  3. HDU 2842 Chinese Rings( 递推关系式 + 矩阵快速幂 )

    链接:传送门 题意:解 N 连环最少步数 % 200907 思路:对于 N 连环来说,解 N 连环首先得先解 N-2 连环然后接着解第 N 个环,然后再将前面 N-2 个环放到棍子上,然后 N 连环问 ...

  4. hdu 2842 Chinese Rings

    点击打开hdu2842 思路: 矩阵快速幂 分析: 1 题目的意思是给定n个环,和一些规则要把所有的环全部拆下最少需要的步数 2 题目规定如果要拆第n个环,那么第n-1个要挂着,n-2环要被拆下.那么 ...

  5. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  6. hdu 2243 考研绝望——复杂的文字(AC自己主动机+矩阵高速功率)

    pid=2243" target="_blank" style="">题目链接:hdu 2243 考研路茫茫--单词情结 题目大意:略. 解题思 ...

  7. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  8. [POJ 3735] Training little cats (结构矩阵、矩阵高速功率)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9613   Accepted: 2 ...

  9. hdu 1575 Tr A(矩阵高速电源输入)

    Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

随机推荐

  1. C语言深度剖析-----函数与指针的分析

                          指针的本质 指针需要保证指向任意数据类型,所以指针变量都占用32位bit即4字节. PS:不同机器上,指针占用内存不一                   ...

  2. 四种卸载Mac软件的方法

    从 Mac 电脑上卸载已经安装的应用程序可能是你知道的操作系统里面最简单的一种了.而如果你是一名新买了 Mac 电脑的用户,那么你可能比较困惑:怎么没有控制面板中的相应板块来卸载它们呢?但是其实你想不 ...

  3. Java反射机制的简单应用

    一直感觉java的反射机制非常强大,可是可用的地方不多.在android学习的时候.一直想实现挂断电话的功能,可是系统并没有提供开放的api接口,看了一下网上使用反射机制来实现该功能,确实非常强大,非 ...

  4. css3-12 transition+css或transform实现过渡动画

    css3-12 transition+css或transform实现过渡动画 一.总结 一句话总结:首先要设置hover后的效果,然后在transition里面指定执行哪些样式和执行时间为多长. 1. ...

  5. 3、Pycharm使用

    1.设置文件模板 file->settings->Editor->File and Code Templates->Python Script 2.运行 a.点击要运行的文件, ...

  6. 【note】缩写词

    CoE CANopen EtherCAT应用程序概要文件CANopen™是一个注冊商标的能够自己主动化汽车集团..纽伦堡.德国CiA402CANopen™驱动器配置文件里指定的IEC 61800-7- ...

  7. php替换空格(php函数的设计思路)

    php替换空格(php函数的设计思路) 一.总结 1.替换和也是先查找了再替换,截取的话就是先查找到再截取 2.设计函数的时候按照的是缺省参数在后,核心东西在前的思路来设计函数的:查找的话是$sear ...

  8. 附加数据库 对于server XXX失败

            近期在学习MVC+EF,看着视频做小demo.EF这一块须要涉及到数据库的连接,视频中所讲的样例与先前牛腩新闻系统数据库挺类似的. 所以,就偷个懒,利用这个数据库,可是在附加的时候出错 ...

  9. poj 2955 Brackets 括号匹配 区间dp

    题意:最多有多少括号匹配 思路:区间dp,模板dp,区间合并. 对于a[j]来说: 刚開始的时候,转移方程为dp[i][j]=max(dp[i][j-1],dp[i][k-1]+dp[k][j-1]+ ...

  10. Havel-Hakimi定理 hdu2454 / poj1695 Havel-Hakimi定理

    Havel-Hakimi定理 当年一度热门出如今ACM赛场上的算法. 算法定义: Havel-Hakimi定理主要用来判定一个给定的序列是否是可图的. 2.首先介绍一下度序列:若把图 G 全部顶点的度 ...