数位$dp$
数位\(dp\)搞了一上午才搞懂。靠这种傻\(X\)的东西竟然花了我一上午的时间。
数位\(dp\)
概念
数位\(dp\)就是强制你分类一些数,例如给你一段区间,然后让你求出不包含\(2\)的数的个数。
思想
利用前缀和的思想,然后求出区间端点的前缀和这样作差就可以了。
实现方式
有两种实现方式。
记忆化搜索版
这种方法比较好理解(例题不要\(37\))
int dfs(int pos,int pre,int sta,bool limit) {
if (pos==-1) return 1;
if (!limit && dp[pos][sta]!=-1) return dp[pos][sta];
int u = limit?a[pos]:9;
int cnt = 0;
for (int i=0; i<=u; ++i) {
if (i==4 || (pre==3&&i==7)) continue;
cnt += dfs(pos-1,i,i==3,limit&&i==a[pos]);
}
if (!limit) dp[pos][sta] = cnt;
return cnt;
}
查询区间\([0 \ldots n]\)
动态规划版
(例题不要\(62\))
void get_dp()
{
dp[0][0]=1;
for (int i=1;i<10;i++)
{
for (int j=0;j<10;j++)
{
if (j==4) dp[i][j]=0;
else if (j==6)
{
for (int k=0;k<10;k++)
dp[i][j]+=dp[i-1][k];
dp[i][j]-=dp[i-1][2];
}
else
{
for (int k=0;k<10;k++)
dp[i][j]+=dp[i-1][k];
}
}
}
}
查询区间\([0\ldots n)\)
完整代码
动态规划
#include<cstdio>
const int maxn=10;
long long dp[maxn][10];
void get_dp()
{
dp[0][0]=1;
for (int i=1;i<10;i++)
{
for (int j=0;j<10;j++)
{
if (j==4) dp[i][j]=0;
else if (j==6)
{
for (int k=0;k<10;k++)
dp[i][j]+=dp[i-1][k];
dp[i][j]-=dp[i-1][2];
}
else
{
for (int k=0;k<10;k++)
dp[i][j]+=dp[i-1][k];
}
}
}
}
int a[maxn];
long long solve(int n)
{
a[0]=0;
while (n)
{
a[++a[0]]=n%10;
n/=10;
}
long long ans=0;
a[a[0]+1]=0;
for (int i=a[0];i>=1;i--)
{
for (int j=0;j<a[i];j++)
if(j!=4 && !(a[i+1]==6 && j==2))
ans+=dp[i][j];
if (a[i]==4) break;
if (a[i+1]==6 && a[i]==2) break;
}
return ans;
}
int main()
{
int n,m;
get_dp();
while (scanf("%d %d",&n,&m)==2 && (n||m))
{
long long k1=solve(m+1);
long long k2=solve(n);
printf("%I64d\n",k1-k2);
}
return 0;
}
关于动态规划版有个难点,就是\(solve\)函数里面的两个\(break\)。因为我们枚举的是最高位,所以当我们最高位枚举到不合法数的时候,我们就会固定,那么剩下数的任何数都是不合法的,所以\(break\)
记忆化搜索
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long LL;
int a[20],p;
int dp[20][2];
int dfs(int pos,int pre,bool sta,bool limit) {
if (pos==-1) return 1;
if (!limit && dp[pos][sta]!=-1) return dp[pos][sta];
int u = limit?a[pos]:9;
int cnt = 0;
for (int i=0; i<=u; ++i) {
if (i==4 || (pre==3&&i==7)) continue;
cnt += dfs(pos-1,i,i==3,limit&&i==a[pos]);
}
if (!limit) dp[pos][sta] = cnt;
return cnt;
}
int work(int x) {
p = 0;
while (x) {
a[p++] = x%10;
x /= 10;
}
return dfs(p-1,-1,0,true);
}
int main() {
memset(dp,-1,sizeof(dp));
int l,r;
cin>>l>>r;
printf("%d",work(r)-work(l-1));
return 0;
}
以上代码借鉴。
数位$dp$的更多相关文章
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- Light OJ 1031---Easy Game(区间DP)
题目链接 http://lightoj.com/volume_showproblem.php?problem=1031 Description You are playing a two player ...
- HDU 5807 Keep In Touch DP
Keep In Touch Problem Description There are n cities numbered with successive integers from 1 to n ...
- 17996 Daily Cool Run (dp)
时间限制:1000MS 内存限制:65535K 提交次数:0 通过次数:0 题型: 编程题 语言: 不限定 Description Daily Cool Run is a popular gam ...
- hdu 1028 Ignatius and the Princess III 简单dp
题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...
- BC.5200.Trees(dp)
Trees Accepts: 156 Submissions: 533 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/6 ...
- hdu 5115 区间dp ***
题意:有n只狼,每只狼有两种属性,一种攻击力一种附加值,我们没杀一只狼,那么我们受到的伤害值为这只狼的攻击值与它旁边的两只狼的附加值的和,求把所有狼都杀光受到的最小的伤害值. 枚举中间k作为最后杀死的 ...
- HDU 4258 Covered Walkway 斜率优化DP
Covered Walkway Problem Description Your university wants to build a new walkway, and they want at ...
- HDU 3853(期望DP)
题意: 在一个r*c的网格中行走,在每个点分别有概率向右.向下或停止不动.每一步需要的时间为2,问从左上角走到右下角的期望时间. SOL: 非常水一个DP...(先贴个代码挖个坑 code: /*== ...
随机推荐
- iOS 系统地图实现及定位
1:加入库CoreLocation.framework,MApKit.framework; 2:@property (nonatomic, strong) CLLocationManager *loc ...
- OpenGL ES 3.0 Graphics Pipeline
一:OpenGL ES 3.0 Graphics Pipeline 渲染管道如下图 1.Vertex Buffer/Arrays Objects的数据由应用程序传进来 2.由上图可以看到Textur ...
- bzoj3275: Number(最小割)
3275: Number 题目:传送门 题解: 双倍经验@bzoj3158 代码: #include<cstdio> #include<cstring> #include< ...
- bzoj1019: [SHOI2008]汉诺塔(动态规划)
1019: [SHOI2008]汉诺塔 题目:传送门 简要题意: 和经典的汉诺塔问题区别不大,但是题目规定了一个移动时的优先级: 如果当前要从A柱子移动,但是A到C的优先级比A到B的优先级大的话,那就 ...
- m_Orchestrate learning system---四、多看参考文档很多事情很轻松就解决了
m_Orchestrate learning system---四.多看参考文档很多事情很轻松就解决了 一.总结 一句话总结:多看参考文档啊 1.面包屑导航如何实现? 1 <ol class=& ...
- js捕获页面回车事件
1.javascript版 document.onkeyup = function (e) { if (window.event)//如果window.event对象存在,就以此事件对象为准 e = ...
- linux进程控制函数详解
进程控制 fork函数 创建一个子进程. pid_t fork(void); 失败返回-1:成功返回:① 父进程返回子进程的ID(非负) ②子进程返回 0 pid_t类型表示进程ID,但为了表示-1, ...
- dev c++与VC assist的杂记
最近要处理一些数据,于是把旧本拿出来用用.但是发现旧本运行速度很慢. 分析之后发现是瑞星的老版本程序里面加了游戏的云存储节点的注册表键.果断把该键删了之后,CPU使用率从66%以上降到24%左右. 然 ...
- Avalon.js 实现列表
<table border="0" cellpadding="0" cellspacing="0" class="tab1& ...
- POJ 3067 Japan 【 树状数组 】
题意:左边有n个城市,右边有m个城市,现在修k条路,问会形成多少个交点 先按照x从小到大排,x相同的话,则按照y从小到大排,然后对于每一个y统计前面有多少个y比它大,它们就一定会相交 另外要用long ...