P2569 [SCOI2010]股票交易

题目描述

最近 \(\text{lxhgww}\) 又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律。

通过一段时间的观察,\(\text{lxhgww}\) 预测到了未来 \(T\) 天内某只股票的走势,第 \(i\) 天的股票买入价为每股 \(AP_i\)​,第 \(i\) 天的股票卖出价为每股 \(BP_i\)​(数据保证对于每个 \(i\),都有 \(AP_i \geq BP_i\)​),但是每天不能无限制地交易,于是股票交易所规定第 \(i\) 天的一次买入至多只能购买 \(AS_i\) 股,一次卖出至多只能卖出 \(BS_i\) 股。

另外,股票交易所还制定了两个规定。为了避免大家疯狂交易,股票交易所规定在两次交易(某一天的买入或者卖出均算是一次交易)之间,至少要间隔 \(W\) 天,也就是说如果在第 \(i\) 天发生了交易,那么从第 \(i+1\) 天到第 \(i+W\)天,均不能发生交易。同时,为了避免垄断,股票交易所还规定在任何时间,一个人的手里的股票数不能超过 \(\text{MaxP}\)。

在第 \(1\) 天之前,\(\text{lxhgww}\) 手里有一大笔钱(可以认为钱的数目无限),但是没有任何股票,当然,\(T\) 天以后,\(\text{lxhgww}\) 想要赚到最多的钱,聪明的程序员们,你们能帮助他吗?

输入输出格式

输入格式:

输入数据第一行包括 \(3\) 个整数,分别是 \(T\) ,\(\text{MaxP}\),\(W\)。

接下来 \(T\) 行,第 \(i\) 行代表第 \(i-1\) 天的股票走势,每行 \(4\) 个整数,分别表示 \(AP_i,\ BP_i,\ AS_i,\ BS_i\)。

输出格式:

输出数据为一行,包括 \(1\) 个数字,表示 \(\text{lxhgww}\) 能赚到的最多的钱数。

输入输出样例

输入样例#1: 复制

5 2 0

2 1 1 1

2 1 1 1

3 2 1 1

4 3 1 1

5 4 1 1

输出样例#1: 复制

3

说明

对于 \(30\%\) 的数据,\(0\leq W<T\leq 50,1\leq\text{MaxP}\leq50\)

对于 \(50\%\) 的数据,\(0\leq W<T\leq 2000,1\leq\text{MaxP}\leq50\)

对于 \(100\%\) 的数据,\(0\leq W<T\leq 2000,1\leq\text{MaxP}\leq2000\)

对于所有的数据,\(1\leq BP_i\leq AP_i\leq 1000,1\leq AS_i,BS_i\leq\text{MaxP}\)

题解

可以说下面这篇博客写的算是非常好了。

sooke关于本题的题解

Code

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
const int N=3e3+5;
int f[N][N];
int as[N],ap[N],bs[N],bp[N];
int n,maxp,w,q[N];
int read(){
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
} int main(){
n=read();maxp=read();w=read();
memset(f,128,sizeof(f));
for(int i=1;i<=n;i++){
ap[i]=read();bp[i]=read();
as[i]=read();bs[i]=read();
for(int j=0;j<=as[i];j++)
f[i][j]=-j*ap[i];
}
for(int i=1;i<=n;i++){
for(int j=0;j<=maxp;j++)
f[i][j]=max(f[i-1][j],f[i][j]);
if(i<=w)continue;
int h=1,t=0;
for(int j=0;j<=maxp;j++){
while(h<=t&&q[h]<j-as[i])h++;
while(h<=t&&f[i-w-1][q[t]]+q[t]*ap[i]<=f[i-w-1][j]+j*ap[i])t--;
q[++t]=j; if(h<=t) f[i][j]=max(f[i][j],f[i-w-1][q[h]]+q[h]*ap[i]-ap[i]*j);
}h=1;t=0;
for(int j=maxp;j>=0;j--){
while(h<=t&&q[h]>j+bs[i])h++;
while(h<=t&&f[i-w-1][q[t]]+q[t]*bp[i]<=f[i-w-1][j]+j*bp[i])t--;
q[++t]=j; if(h<=t) f[i][j]=max(f[i][j],f[i-w-1][q[h]]+q[h]*bp[i]-bp[i]*j);
}
}
cout<<f[n][0]<<endl;
return 0;
}

[luogu] P2569 [SCOI2010]股票交易 (单调队列优化)的更多相关文章

  1. LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)

    传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...

  2. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  3. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  4. 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP

    上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...

  5. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  6. SCOI 股票交易 单调队列优化dp

    这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...

  7. BZOJ 1855 股票交易 - 单调队列优化dp

    传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...

  8. Luogu P2569 [SCOI2010] 股票交易

    此题链接到dp常见优化方法 开始的时候被纪念品误导,以为是多支股票,后来发现事情不妙: 这道题知道的是某一只股票的走势: \(Solution\): \(70pts\): 设\(f[i][j]\)表示 ...

  9. BZOJ1855 股票交易 单调队列优化 DP

    描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as,  某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...

随机推荐

  1. Django入门--创建项目及应用

    Django是用于后台处理的web应用框架.用户通过浏览器输入网址,向http服务器发起访问网页的请求,http服务器(Apache/Nginx)接收到用户请求后,把请求发送给web应用框架进行处理, ...

  2. DOM中元素节点,属性节点,文本节点的理解

    节点信息 每个节点都拥有包含着关于节点某些信息的属性.这些属性是: nodeName(节点名称) nodeValue(节点值) nodeType(节点类型) nodeType nodeType 属性可 ...

  3. struts配置 WEB得拷贝要注意的事项

    原始WEB文件tutoral===>新文件tutoralTest 要将靠拷贝的文件的contextRoot修改(一定要修改)

  4. oracle定时器执行一遍就不执行或本就不执行

    转:http://blog.csdn.net/qq_23311211/article/details/76283689 以sqlplus/ assysdba进入sql命令模式,使用sql:select ...

  5. [Angular] ngx-formly (AKA angular-formly for Angular latest version)

    In our dynamic forms lessons we obviously didn’t account for all the various edge cases you might co ...

  6. [Web Worker] Introduce to Web Worker

    What is web worker for? OK, read it docs to get full details idea. Or just a quick intro to web work ...

  7. shell文本过滤编程(十一):paste命令

    [版权声明:转载请保留出处:blog.csdn.net/gentleliu. Mail:shallnew at 163 dot com] 从字面上能够看出.paste命令和cut命令功能相反,cut命 ...

  8. java里面包的重要性-管理类文件

    包的必要性 包是用来给java源文件分门别类的,java中一个包在windows下就是一个文件夹.包的全限定名是从根文件夹開始的(\src文件夹)以点号作为分隔符,包名和包名之间使用点号隔开,java ...

  9. uva 10534 Wavio Sequence LIS

    // uva 10534 Wavio Sequence // // 能够将题目转化为经典的LIS. // 从左往右LIS记作d[i],从右往左LIS记作p[i]; // 则最后当中的min(d[i], ...

  10. 数据结构(Java语言)——LinkedList简单实现

    下面是一个能够使用的LinkedList泛型类的实现.这里的链表类名为MyLinkedList,避免与类库中反复. MyLinkedList将作为双链表实现,并且保留到该表两端的引用.这样仅仅要操作发 ...