HNU 12933 Random Walks Catalan数 阶乘求逆元新技能
一个Catalan数的题,打表对每个数都求一次逆元会T,于是问到了一种求阶乘逆元的打表新方法。 比如打一个1~n的阶乘的逆元的表,假如叫inv[n],可以先用费马小定理什么的求出inv[n],再用递推公式求出前面的项。
我们记数字 x 的逆元为f(x) (%MOD)。
因为 n! = (n-1)! * n
所以 f(n!) = f( (n-1)! * n) = f( (n-1)! ) * f(n)。
所以 f( (n-1)! ) = f(n!) * f( f(n) ) = f(n!) * n (逆元的逆元就是他自身)
这样子我们就可以用后项推出前面的项了。
题目是说,有一个人从0点开始走路,每次可以向前走或者向后走,每次可以走一步,但是所有的位置必须大于等于0,问走过2n步之后又回到0点有多少种方法。
其实,如果我们把向前走看做是进栈,向后走看做是出栈,方法数就是Catalan数。
所以我们只需要打一张表然后查表就好了。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <string>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <functional>
#include <cctype>
#include <time.h> using namespace std; typedef __int64 ll; const int INF = <<;
const int MAXN = (int) 2e6+;
const ll MOD = (ll) 1e9+; ll ans[MAXN];
ll fac[MAXN];
ll inv[MAXN]; inline ll myPow(ll x, ll n) {
ll res = ;
while (n>) {
if (n&) res = (res*x)%MOD;
x = (x*x)%MOD;
n >>= ;
}
return res;
} int main() {
#ifdef Phantom01
freopen("HNU12933.txt", "r", stdin);
#endif //Phantom01 fac[] = ;
for (int i = ; i < MAXN; i++) fac[i] = (fac[i-]*i)%MOD;
inv[MAXN-] = myPow(fac[MAXN-], MOD-);
for (int i = MAXN-; i > ; i--) {
inv[i] = (inv[i+]*(i+))%MOD;
} for (int i = ; i < (MAXN>>); i++)
ans[i] = (((fac[*i]*inv[i+])%MOD)*inv[i])%MOD; int T;
scanf("%d", &T); int n;
while (T--) {
scanf("%d", &n);
printf("%I64d\n", ans[n]);
} return ;
}
其中,这个是用来打阶乘逆元的:
//阶乘
fac[] = ;
for (int i = ; i < MAXN; i++) fac[i] = (fac[i-]*i)%MOD;
//逆元
inv[MAXN-] = myPow(fac[MAXN-], MOD-);
for (int i = MAXN-; i > ; i--) {
inv[i] = (inv[i+]*(i+))%MOD;
}
HNU 12933 Random Walks Catalan数 阶乘求逆元新技能的更多相关文章
- [xdoj1158]阶乘求逆元(常用于求组合数)
http://acm.xidian.edu.cn/problem.php?id=1158 解题关键:此题注意将$\sum\limits_{i = 0}^x {C_x^iC_y^{i + k}}$转化为 ...
- 【集训笔记】【大数模板】特殊的数 【Catalan数】【HDOJ1133【HDOJ1134【HDOJ1130
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324 http://blog.csdn.net/xymscau/artic ...
- 三维网格分割算法(Random Walks)
首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则 ...
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
- 【BZOJ 3907】网格(Catalan数)
题目链接 这个题推导公式跟\(Catalan\)数是一样的,可得解为\(C_{n+m}^n-C_{n+m}^{n+1}\) 然后套组合数公式\(C_n^m=\frac{n!}{m!(n-m)!}\) ...
- 基于随机游走的三维网格分割算法(Random Walks)
首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则 ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- Catalan数
先看2个问题: 问题一: n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序? 先从简单的入手:n=1,当然只有1种:n=2,可以是1,2 也可以是2,1:那么有2种: ...
- catalan数及笔试面试里那些相关的问题(转)
一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项 ...
随机推荐
- 【算法】Dijkstra算法(单源最短路径问题)(路径还原) 邻接矩阵和邻接表实现
Dijkstra算法可使用的前提:不存在负圈. 负圈:负圈又称负环,就是说一个全部由负权的边组成的环,这样的话不存在最短路,因为每在环中转一圈路径总长就会边小. 算法描述: 1.找到最短距离已确定的顶 ...
- 【原创】Spring连接、事务代码分析
1.JdbcTemplate 当不使用事务时,jdbcTemplate的模板类,通过 Connection con = DataSourceUtils.getConnection(ge ...
- 前端学习之路——Git篇
本文只是一个个人学习Git的笔记,如有错误的地方,还望指出,谢谢!参考资料如下: <Git教程--廖雪峰的官方网站 > bootstrap里面的--git_guide Git安装 在网上搜 ...
- SpringBoot学习笔记(14)----应用监控-HTTP方式
SpringBoot提供了三种应用监控的方式 通过HTTP(最简单方便) 通过JMX 通过远程shell 这里就是用最简单的方式来使用SpringBoot的应用监控 首先引入依赖,pom文件如下 &l ...
- 优动漫PAINT-牵牛花画法教程
喇叭型对画者自身的塑形功力会有较高的要求,作者很靠谱的把他的塑形方式详细呈现了出来~ 对于这样的一个仿真效果的牵牛花完全可以使用优动漫PAINT完成,简单又快捷,软件下载:http://www.don ...
- eclipse的maven工程视图切换
上面图切换成下面图: 点击eclipse右上角,如下图红圈,然后在选择javaEE这样就切换成javaEE视图了
- 【转载·】Linux yum 安装 gcc 、gcc-c++
2017年09月29日 22:45:54 上善若水 阅读数:6653更多 个人分类: Linux学习 所属专栏: Linux学习杂技 版权声明:本文为博主原创文章,未经博主允许不得转载. ht ...
- react-native 编译报错: undefined is not an object (evaluating '_react2.PropTypes.func')
情况通报: 因为是我的二维码模块报错,提示报错代码如下 重要信息是下面的红色字体部分(Android 模拟器红屏) undefined is not an object (evaluating '_r ...
- 【转】C#正则表达式教程和示例
[转]C#正则表达式教程和示例 有一段时间,正则表达式学习很火热很潮流,当时在CSDN一天就能看到好几个正则表达式的帖子,那段时间借助论坛以及Wrox Press出版的<C#字符串和正则表达式参 ...
- 【LeetCode】Merge Intervals 题解 利用Comparator进行排序
题目链接Merge Intervals /** * Definition for an interval. * public class Interval { * int start; * int e ...