Problem Statement

You are given two ints: n and m.

Let D be the number of permutations of the set {1,2,…,n+m} such that the first m values are not fixed points of the permutation. Formally, we are interested in permutations p such that for each j between 1 and m, inclusive, we have p(j) != j.

Compute and return D modulo 1,000,000,007.

Definition

Class:

DerangementsDiv2

Method:

count

Parameters:

int, int

Returns:

int

Method signature:

int count(int n, int m)

(be sure your method is public)

Limits

Time limit (s):

2.000

Memory limit (MB):

512

Stack limit (MB):

512

Constraints

n will be between 0 and 50, inclusive.

m will be between 1 and 50, inclusive.

Examples

0)

0

2

Returns: 1

Here we are looking for permutations of {1, 2} such that p(1) != 1 and p(2) != 2. There is only one such permutation: the permutation (2, 1). In other words, the permutation p such that p(1) = 2 and p(2) = 1.

1)

2

1

Returns: 4

Here we are counting permutations of {1, 2, 3} such that p(1) != 1. There are four such permutations: (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Here, (a, b, c) denotes a permutation p for which p(1) = a, p(2) = b, and p(3) = c.

2)

1

2

Returns: 3

This time we want permutations of {1, 2, 3} such that p(1) != 1 and p(2) != 2. The three such permutations are (2, 1, 3), (2, 3, 1), and (3, 1, 2).

3)

3

5

Returns: 21234

4)

20

27

Returns: 88437461

Watch out for integer overflow.

【题目链接】:

【题意】



给你两个整数n和m;

然后让你求1..n+m的一些满足以下要求的排列p的个数:

要求i从1..m满足p[i]!=i;

【题解】



容斥原理搞;

设ci表示1..m中有i个位置满足pi==i的方案数;

ci=C(m,i)*(n+m-i)!

则答案就为(n+m)!-c1∪c2∪c3…..∪cm

减号右边那个东西,用容斥原理搞

为了不重复计数;

先加上每一个位置都不同的方案,然后减去有两个位置不同的方案,然后加上有3个位置不同的方案,然后减去有4个位置不同的方案…



【Number Of WA】



0



【反思】



取模过程中会出现负数的话,要注意加上MOD数;



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0) typedef pair<int, int> pii;
typedef pair<LL, LL> pll; const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
const double pi = acos(-1.0);
const int N = 50+5;
const LL MOD = (int) 1e9 + 7;
//head LL c[N][N],fac[N+N]; class DerangementsDiv2
{
public:
int count(int n, int m)
{
rep1(i, 1, 50)
c[i][i] = c[i][0] = 1;
rep1(i, 1, 50)
rep1(j, 1, i - 1)
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
fac[0] = 1;
rep1(i, 1, 100)
fac[i] = (fac[i - 1] * i) % MOD;
LL ans = fac[n + m],temp = 0,p = 1;
rep1(i, 1, m) {
temp += (p*c[m][i]%MOD + MOD) % MOD*fac[n + m - i] % MOD;
p = -p;
}
ans = ((ans - temp)%MOD + MOD) % MOD;
return (int) ans;
}
};

【SRM 717 DIV2 C】DerangementsDiv2的更多相关文章

  1. 【SRM 717 div2 B】LexmaxReplace

    Problem Statement Alice has a string s of lowercase letters. The string is written on a wall. Alice ...

  2. 【SRM 717 div2 A】 NiceTable

    Problem Statement You are given a vector t that describes a rectangular table of zeroes and ones. Ea ...

  3. 【Codeforces #312 div2 A】Lala Land and Apple Trees

    # [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...

  4. 【TP SRM 703 div2 250】AlternatingString

    Problem Statement A string of zeros and ones is called an alternating string if no two adjacent char ...

  5. 【TP SRM 703 div2 500】 GCDGraph

    Problem Statement You are given four ints: n, k, x, and y. The ints n and k describe a simple undire ...

  6. 【cf 483 div2 -C】Finite or not?(数论)

    链接:http://codeforces.com/contest/984/problem/C 题意 三个数p, q, b, 求p/q在b进制下小数点后是否是有限位. 思路 题意转化为是否q|p*b^x ...

  7. 【市场调研与分析】Intel发力移动安全领域——By Me at 20140613

                                                    [市场调研与分析]Intel发力移动安全领域                               ...

  8. 【疯狂造轮子-iOS】JSON转Model系列之二

    [疯狂造轮子-iOS]JSON转Model系列之二 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇<[疯狂造轮子-iOS]JSON转Model系列之一> ...

  9. 【疯狂造轮子-iOS】JSON转Model系列之一

    [疯狂造轮子-iOS]JSON转Model系列之一 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 之前一直看别人的源码,虽然对自己提升比较大,但毕竟不是自己写的,很容易遗 ...

随机推荐

  1. .NET深入解析LINQ框架1

    1.LINQ简述 2.LINQ优雅前奏的音符 2.1.隐式类型 (由编辑器自动根据表达式推断出对象的最终类型) 2.2.对象初始化器 (简化了对象的创建及初始化的过程) 2.3.Lambda表达式 ( ...

  2. [arc086e]snuke line

    题意: 有n个区间,询问对于$1\leq i\leq m$的每个i,有多少个区间至少包含一个i的倍数? $1\leq N\leq 3\times 10^5$ $1\leq M\leq 10^5$ 题解 ...

  3. vue:element-ui时间选择器限制只能点不能输入

    原文链接:点我 <el-form-item label="门店成立日期" prop="storeSetupDate"> <template&g ...

  4. win10安装node/yarn报错2503/2502

    当我们从node官网下载windows安装包时会得到一个msi文件,由于win10的安全策略比较严格,所以我们在右键菜单上找不到以管理员运行这个按钮: 普通的exe文件: msi文件: 解决办法: 此 ...

  5. javascript 继承之拷贝,原型,类式

    // 拷贝继承,在子类内调用父类并修正this指向,再通过for in 拷贝父类的方法实现继承,具体实现如下代码 : function Tab(){//父类构造函数 this.name='aaa'; ...

  6. Linux学习02--Linux一切皆文件

    Linux学习第二部 Linux一切皆对象 啊啊啊啊啊,今天被学妹说太直了,嘤嘤嘤. 学习linux两三天了,前期感觉并不难,只是命令多,多记记多敲一敲就能都记住了.希望自己能够坚持下去吧! 下面是根 ...

  7. POJ 1975 Median Weight Bead

    Median Weight Bead Time Limit: 1000ms Memory Limit: 30000KB This problem will be judged on PKU. Orig ...

  8. solr环境搭建&基本使用

    分步指南 solr服务与tomcat整合 solr使用配置步骤 solr使用 推荐分词工具 相关的文章 一.Solr服务与tomcat整合 1.solr相关版本下载路径:http://archive. ...

  9. SCN 时间戳的相互转换

    SQL> select * from v$version where rownum=1; BANNER --------------------------------------------- ...

  10. maven手动增加jar文件

    maven手动增加jar文件 在cmd界面输入: mvn install:install-file -Dfile=D:\com.ibm.mq.jar -DgroupId=com.ibm.mq -Dar ...