Problem Statement

You are given two ints: n and m.

Let D be the number of permutations of the set {1,2,…,n+m} such that the first m values are not fixed points of the permutation. Formally, we are interested in permutations p such that for each j between 1 and m, inclusive, we have p(j) != j.

Compute and return D modulo 1,000,000,007.

Definition

Class:

DerangementsDiv2

Method:

count

Parameters:

int, int

Returns:

int

Method signature:

int count(int n, int m)

(be sure your method is public)

Limits

Time limit (s):

2.000

Memory limit (MB):

512

Stack limit (MB):

512

Constraints

n will be between 0 and 50, inclusive.

m will be between 1 and 50, inclusive.

Examples

0)

0

2

Returns: 1

Here we are looking for permutations of {1, 2} such that p(1) != 1 and p(2) != 2. There is only one such permutation: the permutation (2, 1). In other words, the permutation p such that p(1) = 2 and p(2) = 1.

1)

2

1

Returns: 4

Here we are counting permutations of {1, 2, 3} such that p(1) != 1. There are four such permutations: (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Here, (a, b, c) denotes a permutation p for which p(1) = a, p(2) = b, and p(3) = c.

2)

1

2

Returns: 3

This time we want permutations of {1, 2, 3} such that p(1) != 1 and p(2) != 2. The three such permutations are (2, 1, 3), (2, 3, 1), and (3, 1, 2).

3)

3

5

Returns: 21234

4)

20

27

Returns: 88437461

Watch out for integer overflow.

【题目链接】:

【题意】



给你两个整数n和m;

然后让你求1..n+m的一些满足以下要求的排列p的个数:

要求i从1..m满足p[i]!=i;

【题解】



容斥原理搞;

设ci表示1..m中有i个位置满足pi==i的方案数;

ci=C(m,i)*(n+m-i)!

则答案就为(n+m)!-c1∪c2∪c3…..∪cm

减号右边那个东西,用容斥原理搞

为了不重复计数;

先加上每一个位置都不同的方案,然后减去有两个位置不同的方案,然后加上有3个位置不同的方案,然后减去有4个位置不同的方案…



【Number Of WA】



0



【反思】



取模过程中会出现负数的话,要注意加上MOD数;



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0) typedef pair<int, int> pii;
typedef pair<LL, LL> pll; const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
const double pi = acos(-1.0);
const int N = 50+5;
const LL MOD = (int) 1e9 + 7;
//head LL c[N][N],fac[N+N]; class DerangementsDiv2
{
public:
int count(int n, int m)
{
rep1(i, 1, 50)
c[i][i] = c[i][0] = 1;
rep1(i, 1, 50)
rep1(j, 1, i - 1)
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
fac[0] = 1;
rep1(i, 1, 100)
fac[i] = (fac[i - 1] * i) % MOD;
LL ans = fac[n + m],temp = 0,p = 1;
rep1(i, 1, m) {
temp += (p*c[m][i]%MOD + MOD) % MOD*fac[n + m - i] % MOD;
p = -p;
}
ans = ((ans - temp)%MOD + MOD) % MOD;
return (int) ans;
}
};

【SRM 717 DIV2 C】DerangementsDiv2的更多相关文章

  1. 【SRM 717 div2 B】LexmaxReplace

    Problem Statement Alice has a string s of lowercase letters. The string is written on a wall. Alice ...

  2. 【SRM 717 div2 A】 NiceTable

    Problem Statement You are given a vector t that describes a rectangular table of zeroes and ones. Ea ...

  3. 【Codeforces #312 div2 A】Lala Land and Apple Trees

    # [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...

  4. 【TP SRM 703 div2 250】AlternatingString

    Problem Statement A string of zeros and ones is called an alternating string if no two adjacent char ...

  5. 【TP SRM 703 div2 500】 GCDGraph

    Problem Statement You are given four ints: n, k, x, and y. The ints n and k describe a simple undire ...

  6. 【cf 483 div2 -C】Finite or not?(数论)

    链接:http://codeforces.com/contest/984/problem/C 题意 三个数p, q, b, 求p/q在b进制下小数点后是否是有限位. 思路 题意转化为是否q|p*b^x ...

  7. 【市场调研与分析】Intel发力移动安全领域——By Me at 20140613

                                                    [市场调研与分析]Intel发力移动安全领域                               ...

  8. 【疯狂造轮子-iOS】JSON转Model系列之二

    [疯狂造轮子-iOS]JSON转Model系列之二 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇<[疯狂造轮子-iOS]JSON转Model系列之一> ...

  9. 【疯狂造轮子-iOS】JSON转Model系列之一

    [疯狂造轮子-iOS]JSON转Model系列之一 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 之前一直看别人的源码,虽然对自己提升比较大,但毕竟不是自己写的,很容易遗 ...

随机推荐

  1. ORA-01658无法为表空间中的段创建INITIAL区

    导出空表设置时,提示错误是: ORA-01658无法为表空间中的段创建INITIAL区 查找解决方案为 表空间已满    设置表空间自动增长 即可 例:  alter database datafil ...

  2. (2016北京集训十三)【xsy1533】mushroom - bitset

    题解: 神题...我看到的时候直接吓懵了... 这是一道STL题...否则可能要写可持久化ETT或者可持久化Toptree? 用bitset来维护每个蘑菇上哪里有杂草,那么 对于操作1和操作2:可以预 ...

  3. luogu P3604 美好的每一天(莫队+二进制)

    这个题还是可以的. 但是卡常卡得我心力憔悴.还是太菜了 我们把一个区间当做一个26位二进制数,每一位代表一个英文,二进制数的每一个位0代表这一位对应的字母出现了偶数次,否则出现了奇数次. 那么一个区间 ...

  4. java compare 时间排序

    所有数据存进resultList中 Collections.sort(resultList, new Comparator<HashMap<String, Object>>() ...

  5. PHP JWT初识

    一直没有好好看过jwt,直到前两天要做web验证,朋友给我推荐了jwt.才发现jwt已经被大家广泛的应用了.看来我有点out了.哈哈,趁着这个世界来好好看看这个. JWT(JSON Web Token ...

  6. Python求阴影部分面积

    一.前言说明 今天看到微信群里一道六年级数学题,如下图,求阴影部分面积 看起来似乎并不是很难,可是博主添加各种辅助线,写各种方法都没出来,不得已而改用写Python代码来求面积了 二.思路介绍 1.用 ...

  7. C语言中头文件尖括号和引号的区别

    用include 引用头文件时,双引号和尖括号的区别: 1.双引号:引用非标准库的头文件,编译器首先在程序源文件所在目录查找,如果未找到,则去系统默认目录查找,通常用于引用用户自定义的头文件. 2.尖 ...

  8. NYIST 531 太空飞行计划

    太空飞行计划 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述        W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利 ...

  9. C/C++中相对路径与绝对路径以及斜杠与反斜杠的区别

    1 绝对路径与相对路径 绝对路径表示相对容易得多,依次将文件所在盘符文件夹逐级展开就是绝对路径: ofstream infile("E:\\MyDoc\\file.txt", io ...

  10. Atitit.运行cmd 命令行 php

    Atitit.运行cmd 命令行 php 1. 运行cmd 命令行,调用系统命令的基础 1 1.1. 实际运行模式 1 1.2. 空格的问题 1 1.3. 中文路径的问题.程序文件读取编码设置 1 1 ...