1. caffe 网络结构可视化

http://ethereon.github.io/netscope/quickstart.html

将网络结构复制粘贴到左侧的编辑框,按Shift+Enter就可以显示出你的网络结构

2. caffe计算图片的均值

使用caffe自带的均值计算工具

./build/tools/compute_image_mean ROOT_OF_IMAGES  ROOT_TO_PLACE_MEAN_FILE

第一个参数:需要计算均值的图片路径,格式为LMDB训练数据

第二个参数:计算出来的结果保存路径

./build/tools/compute_image_mean project/SqueezeNet/SqueezeNet_v1.0/test_lmdb project/SqueezeNet/SqueezeNet_v1.0/test_mean.binaryproto

python格式的均值计算

先用LMDB格式数据,计算出二进制格式均值,然后转换成python格式均值

#!/usr/bin/env python
import numpy as np
import sys,caffe if len(sys.argv)!=3:
print "Usage: python convert_mean.py mean.binaryproto mean.npy"
sys.exit() blob = caffe.proto.caffe_pb2.BlobProto()
bin_mean = open( sys.argv[1] , 'rb' ).read()
blob.ParseFromString(bin_mean)
arr = np.array( caffe.io.blobproto_to_array(blob) )
npy_mean = arr[0]
np.save( sys.argv[2] , npy_mean )  

脚本保存为convert_mean.py

调用格式:

sudo python convert_mean.py mean.binaryproto mean.npy

mean.npy是我们需要的python格式二进制文件

3. 可视化训练过程中的 training/testing loss

  • NVIDIA-DIGITS: caffe训练可视化工具(数据准备,模型选择,学习曲线可视化,多GPU训练
  • 训练时 --solver=solver.ptototxt 2>&1 | tee train.log, 然后使用 ./tools/extra/parse_log.py train.log将其转为两个csv 文件分别包括train loss和test loss, 然后使用以下脚本画图:
import pandas as pd
from matplotlib import *
from matplotlib.pyplot import * train_log = pd.read_csv("./lenet_train.log.train")
test_log = pd.read_csv("./lenet_train.log.test")
_, ax1 = subplots(figsize=(15, 10))
ax2 = ax1.twinx()
ax1.plot(train_log["NumIters"], train_log["loss"], alpha=0.4)
ax1.plot(test_log["NumIters"], test_log["loss"], 'g')
ax2.plot(test_log["NumIters"], test_log["acc"], 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('train loss')
ax2.set_ylabel('test accuracy')
savefig("./train_test_image.png") #save image as png

  

【Tool】 深度学习常用工具的更多相关文章

  1. Linux下深度学习常用工具的安装

    .Matlab 2015 64bit 的安装 (一)安装包下载 百度网盘: [https://pan.baidu.com/s/1gf9IeCN], 密码: 4gj3 (二)Vmware 使用Windo ...

  2. 深度学习标注工具 LabelMe 的使用教程(Windows 版本)

    深度学习标注工具 LabelMe 的使用教程(Windows 版本) 2018-11-21 20:12:53 精灵标注助手:http://www.jinglingbiaozhu.com/ LabelM ...

  3. 深度学习常用数据集 API(包括 Fashion MNIST)

    基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 ...

  4. 卷积神经网络CNN与深度学习常用框架的介绍与使用

    一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器 ...

  5. python数据可视化、数据挖掘、机器学习、深度学习 常用库、IDE等

    一.可视化方法 条形图 饼图 箱线图(箱型图) 气泡图 直方图 核密度估计(KDE)图 线面图 网络图 散点图 树状图 小提琴图 方形图 三维图 二.交互式工具 Ipython.Ipython not ...

  6. 包含深度学习常用框架的Docker环境

    相关的代码都在Github上,请参见我的Github,https://github.com/lijingpeng/deep-learning-notes 敬请多多关注哈~~~ All in one d ...

  7. 深度学习开源工具——caffe介绍

    本页是转载caffe的一个介绍,之前的页面图都down了,更新一下. 目录 简介 要点记录 提问 总结 简介 报告时间是北京时间 12月14日 凌晨一点到两点,主讲人是 Caffe 团队的核心之一 E ...

  8. 深度学习常用的数据源(MNIST,CIFAR,VOC2007系列数据)

    MINIST手写数据集 压缩包版: http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz http://yann.lecun.com/ ...

  9. 深度学习可视化工具--tensorboard的使用

    tensorboard的使用 官方文档 # writer.add_scalar() # 添加标量 """ Args: tag (string): Data identif ...

随机推荐

  1. java的基本数据类型及运算符等

    基本数据类型 一.整数(整形) 值域 1. byte [-128,127] 2.short [-32768,32767] 3.int [-2147483648,2147483647] 4.long [ ...

  2. alg--动态规划(dynamic planning)

    怎么开头呢? 一句话概括吧, dp的思想就是递归的反思想. 参考的理化: https://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741374.h ...

  3. 《黑白团团队》第八次团队作业:Alpha冲刺 第三天

    项目 内容 作业课程地址 任课教师首页链接 作业要求 团队项目 填写团队名称 黑白团团队 填写具体目标 认真负责,完成项目 团队项目Github仓库地址链接. 第三天 日期:2019/6/17 成员 ...

  4. 【AIM Tech Round 5 (rated, Div. 1 + Div. 2) 总结】【题解往前或往后翻,不在这】

    又是爆炸的一场 心态有点小崩.但问题不大.. 看A题,一直担心有多个正方形..小心翼翼地看完之后,毅然地交上去了. [00:08] A[Accpted] 然后开始看B题. 觉得和之前做的某题很像,但翻 ...

  5. 使用IO,递归打印目录树

    package chengbaoDemo; import java.io.File; import java.io.IOException; public class TestIOFile { pub ...

  6. WCF与各语言通信框架比较

  7. etymology-R

    1)vor = to eat devour vt. 狼吞虎咽地吃光: 吞没,毁灭: 目不转睛地看[de-向下+vour-吃] voracity  n.贪食,贪婪.拉丁词根vor-,vorac-表示吞食 ...

  8. Solr 搜索的过程和所须要的參数

    一个典型的搜索处理过程,以及所须要的參数例如以下: qt:指定一个RequestHandler,即/select.缺省是使用DisMax RequestHandler defType:选择一个quer ...

  9. 拷贝构造函数(深拷贝vs浅拷贝)

    拷贝构造函数(深拷贝vs浅拷贝) 类对象之间的初始化是由类的拷贝构造函数完毕的.它是一种特殊的构造函数,它的作用是用一个已知的对象来初始化还有一个对象.假设在类中没有显式地声明一个拷贝构造函数.那么, ...

  10. POJ1274 The Perfect Stall 二分图,匈牙利算法

    N头牛,M个畜栏,每头牛仅仅喜欢当中的某几个畜栏,可是一个畜栏仅仅能有一仅仅牛拥有,问最多能够有多少仅仅牛拥有畜栏. 典型的指派型问题,用二分图匹配来做,求最大二分图匹配能够用最大流算法,也能够用匈牙 ...