Intelligence System (hdu 3072 强联通缩点+贪心)
Intelligence System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1650 Accepted Submission(s): 722
Now, kzc_tc, the head of the Intelligence Department (his code is once 48, but now 0), is sudden obtaining important information from one Intelligence personnel. That relates to the strategic direction and future development of the situation of ALPC. So it
need for emergency notification to all Intelligence personnel, he decides to use the intelligence system (kzc_tc inform one, and the one inform other one or more, and so on. Finally the information is known to all).
We know this is a dangerous work. Each transmission of the information can only be made through a fixed approach, from a fixed person to another fixed, and cannot be exchanged, but between two persons may have more than one way for transferring. Each act of
the transmission cost Ci (1 <= Ci <= 100000), the total cost of the transmission if inform some ones in our ALPC intelligence agency is their costs sum.
Something good, if two people can inform each other, directly or indirectly through someone else, then they belong to the same branch (kzc_tc is in one branch, too!). This case, it’s very easy to inform each other, so that the cost between persons in the same
branch will be ignored. The number of branch in intelligence agency is no more than one hundred.
As a result of the current tensions of ALPC’s funds, kzc_tc now has all relationships in his Intelligence system, and he want to write a program to achieve the minimum cost to ensure that everyone knows this intelligence.
It's really annoying!
In each case, the first line is an Integer N (0< N <= 50000), the number of the intelligence personnel including kzc_tc. Their code is numbered from 0 to N-1. And then M (0<= M <= 100000), the number of the transmission approach.
The next M lines, each line contains three integers, X, Y and C means person X transfer information to person Y cost C.
Believe kzc_tc’s working! There always is a way for him to communicate with all other intelligence personnel.
3 3
0 1 100
1 2 50
0 2 100
3 3
0 1 100
1 2 50
2 1 100
2 2
0 1 50
0 1 100
150
100
50
pid=3077" target="_blank">3077
pid=3070" target="_blank">3070
pid=3071" target="_blank">3071
pid=3073" target="_blank">3073
题意:n个人m个单向关系。如今要通知全部的人,两个人之间联系有费用,求最小费用,处于同一个联通块的两个人之间通讯不须要花费。
思路:先建图使用Tarjan算法缩点,然后依据题意我们应该求缩点后新图的最小树形图,但是这里不是必需,为什么?细致想一想,首先题意说总是有解,所以最小树形图一定存在。那么我们对于每个点在它的全部入边中选择一个花费最小的入边(入度为零的点除外)那么答案就是每个点的最小花费之和。这样贪心是可行的,由于在这个过程中不会出现环,非常easy想到,假设出现了环那么这个环就又是一个联通块了,但是我们之前已经求出了联通块,保证了新图中没有环。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; const int MAXN = 50010;//点数
const int MAXM = 500010;//边数 struct Edge
{
int to,c,next;
}edge[MAXM]; int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强联通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强联通分量包括的点的个数,数组编号为1~scc
//num数组不一定须要,结合实际情况 void addedge(int u,int v,int c)
{
edge[tot].to=v;
edge[tot].c=c;
edge[tot].next=head[u];
head[u]=tot++;
} void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=++Index;
Stack[top++]=u;
Instack[u]=true;
for (int i=head[u];i+1;i=edge[i].next)
{
v=edge[i].to;
if (!DFN[v])
{
Tarjan(v);
if (Low[u]>Low[v]) Low[u]=Low[v];
}
else if (Instack[v]&&Low[u]>DFN[v])
Low[u]=DFN[v];
}
if (Low[u]==DFN[u])
{
scc++;
do{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
num[scc]++;
}while (v!=u);
}
} void solve(int N)
{
memset(DFN,0,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,0,sizeof(num));
Index=scc=top=0;
for (int i=1;i<=N;i++) //点的编号从1開始
if (!DFN[i])
Tarjan(i);
} int n,m;
int d[MAXN],in[MAXN]; void init()
{
tot=0;
memset(head,-1,sizeof(head));
memset(d,INF,sizeof(d));
memset(in,0,sizeof(in));
} int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/asus1/Desktop/IN.txt","r",stdin);
#endif
int i,j,u,v,c;
while (~sff(n,m))
{
init();
for (i=0;i<m;i++)
{
sfff(u,v,c);
u++;v++;
addedge(u,v,c);
}
solve(n);
int ans=0;
for (u=1;u<=n;u++)
{
for (i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if (Belong[u]!=Belong[v])
in[Belong[v]]++;
}
}
for (u=1;u<=n;u++)
{
for (j=head[u];~j;j=edge[j].next)
{
int v=edge[j].to;
if (Belong[u]!=Belong[v])
d[Belong[v]]=min(d[Belong[v]],edge[j].c);
}
}
for (i=1;i<=scc;i++)
{
if (in[i]==0) continue;
ans+=d[i];
}
pf("%d\n",ans);
}
return 0;
}
Intelligence System (hdu 3072 强联通缩点+贪心)的更多相关文章
- Proving Equivalences (hdu 2767 强联通缩点)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2767-Proving Equivalences(强联通+缩点)
题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...
- HDU 6170 FFF at Valentine(强联通缩点+拓扑排序)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6165 题意:给你一个无环,无重边的有向图,问你任意两点,是否存在路径使得其中一点能到达另一点 解析:强 ...
- POJ 2186 Popular Cows(强联通+缩点)
Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= ...
- [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...
- POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)
[题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...
- HDU 5934 强联通分量
Bomb Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- hdu 4612 双联通缩点+树形dp
#pragma comment(linker,"/STACK:102400000,102400000")//总是爆栈加上这个就么么哒了 #include<stdio.h> ...
- 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】
FFF at Valentine Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
随机推荐
- VS2010调试技巧
最近合作开发,代码已经完成了,但是一调试,错误一大堆,由于是合作开发,不确定是哪层的错误,得一步步得走,很是费时费力,平时调试的技巧用的不多,现在集中调试,结果有些手忙脚乱,效率也很低,所以在网上找了 ...
- 最全Pycharm教程(11)——Pycharm调试器之断点篇
最全Pycharm教程(1)--定制外观 最全Pycharm教程(2)--代码风格 最全Pycharm教程(3)--代码的调试.执行 最全Pycharm教程(4)--有关Python解释器的相关配置 ...
- /etc/rc.d/init.d/functions文件详细分析
/etc/rc.d/init.d/functions文件详细分析 functions这个脚本是给/etc/init.d里边的文件使用的(可理解为全局文件). 提供了一些基础的功能,看看里边究竟有些什么 ...
- mysql字符集说明
mysql字符集说明 一.mysql中涉及的几个字符集 Ø character-set-server/default-character-set:服务器字符集,默认情况下所采用的. Ø charact ...
- Java从零开始学十一(类和对象)
一.面象对象 二.什么是类 我肯定说,不知道.不清楚. 简单讲类是java中的基本单元,类是具有相同特性和行为的对象集合 三.类的定义 3.1.类的定义 class 类名称{ 数据类型 属性 ; … ...
- 使用JSP实现输出(web基础学习笔记二)
Jsp:Java Server Page 服务器端的Java页面,动态网页技术 jsp注释 显式注释:这种注释客户端是允许看见的;<!--html注释--> 隐式注释:这种注释客户端是看不 ...
- Linux软件安装方法
常用的两种软件安装方法: 1.RPM软件安装 rpm -qi 软件名 查询 rpm -ivh *.rpm 安装 rpm -e 软件名 卸载 系统自带的一些rpm包在系统镜像的Server文件夹里,需要 ...
- Field.setAccessible()方法
http://blog.csdn.net/kjfcpua/article/details/8496911 java代码中,常常将一个类的成员变量置为private 在类的外面获取此类的私有成员变量的v ...
- 【IPC进程间通讯之二】管道Pipe
IPC进程间通信+管道Pipe IPC(Inter-Process Communication.进程间通信). 管道用于进程间共享数据,事实上质是共享内存 ...
- ES6 async await 面试题
转自:https://juejin.im/post/5c0397186fb9a049b5068e54 1.题目一 async function async1(){ console.log('async ...