我们在图的定义中说过,带有权值的图就是网结构。一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边。所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小。综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree)。

找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法。

为了能够讲明白这个算法,我们先构造网图的邻接矩阵,如图7-6-3的右图所示。

也就是说,现在我们已经有了一个存储结构为MGraph的MG(见《邻接矩阵创建图》)。MG有9个顶点,它的二维数组如右图所示,数组中我们使用65535代表无穷。

下面我们对着程序和每一步循环的图示来看:

算法代码:(改编自《大话数据结构》)

 C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
 
/* Prim算法生成最小生成树  */
void MiniSpanTree_Prim(MGraph MG)
{
    int min, i, j, k;
    int adjvex[MAXVEX];/* 保存相关顶点下标 */
    int lowcost[MAXVEX];/* 保存相关顶点间边的权值 */
    lowcost[0] = 0;/* 初始化第一个权值为0,即v0加入生成树 */
    /* lowcost的值为0,在这里就是此下标的顶点已经加入生成树 */
    adjvex[0] = 0;/* 初始化第一个顶点下标为0 */
    cout << "最小生成树的边为:" << endl;
    for (i = 1; i < MG.numVertexes; i++)
    {
        lowcost[i] = MG.arc[0][i];/* 将v0顶点与之有边的权值存入数组 */
        adjvex[i] = 0;/* 初始化都为v0的下标 */
    }

for (i = 1; i < MG.numVertexes; i++)
    {
        min = INFINITY; /* 初始化最小权值为∞, */

j = 1;
        k = 0;

while (j < MG.numVertexes)/* 循环全部顶点 */
        {
            if (lowcost[j] != 0 && lowcost[j] < min)/* 如果权值不为0且权值小于min */
            {
                min = lowcost[j];/* 则让当前权值成为最小值 */
                k = j;/* 将当前最小值的下标存入k */
            }

j++;
        }

cout << "(" << adjvex[k] << ", " << k << ")" << "  "; /* 打印当前顶点边中权值最小的边 */
        lowcost[k] = 0;/* 将当前顶点的权值设置为0,表示此顶点已经完成任务 */

for (j = 1; j < MG.numVertexes; j++)/* 循环所有顶点 */
        {
            /* 如果下标为k顶点各边权值小于此前这些顶点未被加入生成树权值 */
            if (lowcost[j] != 0 && MG.arc[k][j] < lowcost[j])
            {
                lowcost[j] = MG.arc[k][j];/* 将较小的权值存入lowcost相应位置 */
                adjvex[j] = k;/* 将下标为k的顶点存入adjvex */
            }
        }
    }
    cout << endl;
}

1、程序中1~16行是初始化操作,其中第7~8行 adjvex[0] = 0 意思是现在从顶点v0开始(事实上从那一点开始都无所谓,假定从v0开始),lowcost[0]= 0 表示v0已经被纳入到最小生成树中,之后凡是lowcost数组中的值被设为0就表示此下标的顶点被纳入最小生成树。

2、第11~15行表示读取邻接矩阵的第一行数据,所以 lowcost数组为{ 0 ,10, 65535, 65535, 65535, 11, 65535, 65535, 65535 },而adjvex数组为全0。至此初始化完毕。

3、第17~49行共循环了8次,i从1一直累加到8,整个循环过程就是构造最小生成树的过程。

4、第24~33行,经过循环后min = 10, k = 1。注意26行的if 判断lowcost[j] != 0 表示已经是生成树的顶点则不参加最小权值的查找。

5、第35行,因k = 1, adjvex[1] = 0, 所以打印结果为(0, 1),表示v0 至 v1边为最小生成树的第一条边,如下图的第一个小图。

6、第36行,因k = 1 将lowcost[k] = 0 就是说顶点v1纳入到最小生成树中,此时lowcost数组为{ 0,0, 65535, 65535, 65535, 11, 65535, 65535, 65535 }

7、第38~47行,j 循环从1 到8, 因k = 1,查找邻接矩阵的第v1行的各个权值,与lowcost数组对应值比较,若更小则修改lowcost值,并将k值存入adjvex数组中。所以最终lowcost = { 0,0, 18, 65535, 65535, 11, 16, 65535, 12 }。 adjvex数组的值为 {0, 0, 1, 0, 0, 0, 1, 0,
1 }。这里的if判断也表示v0和v1已经是生成树的顶点不参与最小权值的比对了。

上面所述为第一次循环,对应下图i = 1的第一个小图,由于要用文字描述清楚整个流程比较繁琐,下面给出i为不同值一次循环下来后的生成树图示,所谓一图值千言,大家对着图示自己模拟地循环8次就能理解普里姆算法的思想了。

即最小生成树的边为:(0, 1), (0, 5), (1, 8), (8, 2), (1, 6), (6, 7), (7, 4), (7, 3)

最后再来总结一下普里姆算法的定义:

假设N = (V{E} )是连通网,TE是N上最小生成树的集合。算法从U = { u0} ( uo V),TE = { } 开始。重复执行下述操作:在所有

uU,v V - U 的边(u, v) E 中找一条代价最小的边(u0 , v0)
并入集合TE, 同时v0 并入U, 直至 U = V 为止。此时TE 中必有n-1 条边, 则 T = (V,{TE} ) 为N的最小生成树。

由算法代码中的循环嵌套可得知此算法的时间复杂度为O(n^2)。

对比普里姆和克鲁斯卡尔算法,克鲁斯卡尔算法主要针对边来展开,边数少时效率比较高,所以对于稀疏图有较大的优势;而普里姆算法对于稠密图,即边数非常多的情况下更好一些。

图解最小生成树 - 普里姆(Prim)算法的更多相关文章

  1. 普里姆Prim算法介绍

    普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T ...

  2. 最小生成树-普利姆(Prim)算法

    最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...

  3. 图论---最小生成树----普利姆(Prim)算法

    普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...

  4. JS实现最小生成树之普里姆(Prim)算法

    最小生成树: 我们把构造连通网的最小代价生成树称为最小生成树.经典的算法有两种,普利姆算法和克鲁斯卡尔算法. 普里姆算法打印最小生成树: 先选择一个点,把该顶点的边加入数组,再按照权值最小的原则选边, ...

  5. 图的普里姆(Prim)算法求最小生成树

    关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说 ...

  6. 普里姆(Prim)算法

    /* 普里姆算法的主要思想: 利用二维数组把权值放入,然后找在当前顶点的最小权值,然后走过的路用一个数组来记录 */ # include <stdio.h> typedef char Ve ...

  7. 图->连通性->最小生成树(普里姆算法)

    文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可 ...

  8. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  9. 经典问题----最小生成树(prim普里姆贪心算法)

    题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...

随机推荐

  1. jQuery多文件下载

    文件下载是一个Web中非常常用的功能,不过你是做内部管理系统还是做面向公众的互联网公司都会遇到这个问题,对于下载一般有点实际开发经验的都会自己解决,上周弄了一下多文件下载,业务场景就是一条数据详细信息 ...

  2. 【Dagger2】 案例大全

    只有Inject是不可以的,必须有Component public class Test { @Inject Person person; private void test() { System.o ...

  3. jQuery练手:仿新浪微博图片文字列表淡进淡出上下滚动效果

    1.效果及功能说明 仿新浪微博图片文字列表上下淡进淡出间歇上下滚动 2.实现原理 首先要设定div内只能显示4个图片那么多出来的图片会自动隐藏然后在给图片添加一个动画的事件让他们可以滚动的播放出来上下 ...

  4. quickcocos2dx framework环境变 fatal error C1083: 无法打开源文件:“.Box2D/Dynamics/b2World.h”: No such file or d

      : fatal error C1083: 无法打开源文件:".Box2D/Dynamics/b2World.h": No such file or directory 解决方法 ...

  5. [Backbone]7. Collection Views, Custom Events

    It's finally time to start building out our Appointment app. We're going to be using a collection an ...

  6. cpu访址能力和内存

    这里有两个概念:cpu访址能力和提供的内存.举例来说,有个灯泡,可以照亮100立方米的空间,只有照亮的空间才可以工作.假如现在的空间只有50立方米,只要增加空间,可工作的空间就增加了.如果当前已经是1 ...

  7. ArcGIS Pro体验02——启动、创建工程

    所有的猜测都是眼睛看到的,自己想到的,可能不一定正确哈. 任务界面十分简洁,左上是创建新工程,右上是账户名称,左上是关于. 可以直接创建一个工程,Blank应该是无类型,最后保存再选择:Global ...

  8. Windows改桌面文件路径

    默认的桌面和用户文件都是C盘,每次重装系统要备份,为了方便可以把它设置到其他盘符,一种方式是通过一些软件功能,如360有一个C盘搬家,也可以修改注册表文件: Windows Registry Edit ...

  9. 单点登录(SSO)(原创)

    单点登录(Single Sign On),简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统. 下面的sso ...

  10. vscode - 设置中文语言

    记得上次安装的时候,自动提示安装本地语言包,现在的版本貌似不会了吧. 1.先安装扩展,按键CTRL+SHIFT+P 输入 ext install ,最后输入:language,大概就可以找到简体中文包 ...