转自:blog.leanote.com/post/afanti.deng@gmail.com/b5f4f526490b

ROI Align 是在Mask-RCNN这篇论文里提出的一种区域特征聚集方式, 很好地解决了ROI Pooling操作中两次量化造成的区域不匹配(mis-alignment)的问题。实验显示,在检测测任务中将 ROI Pooling 替换为 ROI Align 可以提升检测模型的准确性。

1. ROI Pooling 的局限性分析

在常见的两级检测框架(比如Fast-RCNN,Faster-RCNN,RFCN)中,ROI Pooling 的作用是根据预选框的位置坐标在特征图中将相应区域池化为固定尺寸的特征图,以便进行后续的分类和包围框回归操作。由于预选框的位置通常是由模型回归得到的,一般来讲是浮点数,而池化后的特征图要求尺寸固定。故ROI Pooling这一操作存在两次量化的过程。

  • 将候选框边界量化为整数点坐标值。
  • 将量化后的边界区域平均分割成 k x k 个单元(bin),对每一个单元的边界进行量化。

事实上,经过上述两次量化,此时的候选框已经和最开始回归出来的位置有一定的偏差,这个偏差会影响检测或者分割的准确度。在论文里,作者把它总结为“不匹配问题(misalignment)。

下面我们用直观的例子具体分析一下上述区域不匹配问题。如 图1 所示,这是一个Faster-RCNN检测框架。输入一张800*800的图片,图片上有一个665*665的包围框(框着一只狗)。图片经过主干网络提取特征后,特征图缩放步长(stride)为32。因此,图像和包围框的边长都是输入时的1/32。800正好可以被32整除变为25。但665除以32以后得到20.78,带有小数,于是ROI Pooling 直接将它量化成20。接下来需要把框内的特征池化7*7的大小,因此将上述包围框平均分割成7*7个矩形区域。显然,每个矩形区域的边长为2.86,又含有小数。于是ROI Pooling 再次把它量化到2。经过这两次量化,候选区域已经出现了较明显的偏差(如图中绿色部分所示)。更重要的是,该层特征图上0.1个像素的偏差,缩放到原图就是3.2个像素。那么0.8的偏差,在原图上就是接近30个像素点的差别,这一差别不容小觑。

图 1 

2. ROI Align 的主要思想和具体方法

为了解决ROI Pooling的上述缺点,作者提出了ROI Align这一改进的方法(如图2)。ROI Align的思路很简单:取消量化操作,使用双线性内插的方法获得坐标为浮点数的像素点上的图像数值,从而将整个特征聚集过程转化为一个连续的操作,。值得注意的是,在具体的算法操作上,ROI Align并不是简单地补充出候选区域边界上的坐标点,然后将这些坐标点进行池化,而是重新设计了一套比较优雅的流程,如 图3 所示:

  • 遍历每一个候选区域,保持浮点数边界不做量化。
  • 将候选区域分割成k x k个单元,每个单元的边界也不做量化。
  • 在每个单元中计算固定四个坐标位置,用双线性内插的方法计算出这四个位置的值,然后进行最大池化操作。

这里对上述步骤的第三点作一些说明:这个固定位置是指在每一个矩形单元(bin)中按照固定规则确定的位置。比如,如果采样点数是1,那么就是这个单元的中心点。如果采样点数是4,那么就是把这个单元平均分割成四个小方块以后它们分别的中心点。显然这些采样点的坐标通常是浮点数,所以需要使用插值的方法得到它的像素值。在相关实验中,作者发现将采样点设为4会获得最佳性能,甚至直接设为1在性能上也相差无几。事实上,ROI Align 在遍历取样点的数量上没有ROIPooling那么多,但却可以获得更好的性能,这主要归功于解决了misalignment的问题。值得一提的是,我在实验时发现,ROI Align在VOC2007数据集上的提升效果并不如在COCO上明显。经过分析,造成这种区别的原因是COCO上小目标的数量更多,而小目标受misalignment问题的影响更大(比如,同样是0.5个像素点的偏差,对于较大的目标而言显得微不足道,但是对于小目标,误差的影响就要高很多)。

图 2 
 
图 3 

3. ROI Align 的反向传播

常规的ROI Pooling的反向传播公式如下:

这里,xi代表池化前特征图上的像素点;yrj代表池化后的第r个候选区域的第j个点;i*(r,j)代表点yrj像素值的来源(最大池化的时候选出的最大像素值所在点的坐标)。由上式可以看出,只有当池化后某一个点的像素值在池化过程中采用了当前点Xi的像素值(即满足i=i*(r,j)),才在xi处回传梯度。

类比于ROIPooling,ROIAlign的反向传播需要作出稍许修改:首先,在ROIAlign中,xi*(r,j)是一个浮点数的坐标位置(前向传播时计算出来的采样点),在池化前的特征图中,每一个与 xi*(r,j) 横纵坐标均小于1的点都应该接受与此对应的点yrj回传的梯度,故ROI Align 的反向传播公式如下: 
   

上式中,d(.)表示两点之间的距离,Δh和Δw表示 xi 与 xi*(r,j) 横纵坐标的差值,这里作为双线性内插的系数乘在原始的梯度上。

ROI align解释的更多相关文章

  1. ROI Pool和ROI Align

    这里说一下ROI Pool和ROI Align的区别: 一.ROI Pool层: 参考faster rcnn中的ROI Pool层,功能是将不同size的ROI区域映射到固定大小的feature ma ...

  2. 目标检测中roi的有关操作

    1.roi pooling 将从rpn中得到的不同Proposal大小变为fixed_length output, 也就是将roi区域的卷积特征拆分成为H*W个网格,对每个网格进行maxpooling ...

  3. 『计算机视觉』Region Proposal by Guided Anchoring

    论文地址:Guided Anchoring 不得不佩服自媒体,直接找到了论文作者之一写了篇解析文章,这里给出链接,本文将引用一部分原作者的解析,减少我的打字量,也方便结合比照理解. 一.问题和思路 1 ...

  4. Mask RCNN 学习笔记

    下面会介绍基于ResNet50的Mask RCNN网络,其中会涉及到RPN.FPN.ROIAlign以及分类.回归使用的损失函数等 介绍时所采用的MaskRCNN源码(python版本)来源于GitH ...

  5. Mask RCNN 简单使用

    涉及到的知识点补充: FasterRCNN:https://www.cnblogs.com/wangyong/p/8513563.html RoIPooling.RoIAlign:https://ww ...

  6. Mask R-CNN论文理解

    摘要: Mask RCNN可以看做是一个通用实例分割架构. Mask RCNN以Faster RCNN原型,增加了一个分支用于分割任务. Mask RCNN比Faster RCNN速度慢一些,达到了5 ...

  7. [Network Architecture]Mask R-CNN论文解析(转)

    前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Ma ...

  8. Paper Reading:Mask RCNN

    Mask RCNN 论文:Mask R-CNN 发表时间:2018 发表作者:(Facebook AI Research)Kaiming He, Georgia Gkioxari, Piotr Dol ...

  9. [论文理解] Acquisition of Localization Confidence for Accurate Object Detection

    Acquisition of Localization Confidence for Accurate Object Detection Intro 目标检测领域的问题有很多,本文的作者捕捉到了这样一 ...

随机推荐

  1. Scrum Meeting 13 -2014.11.19

    最近数据库和编译的实验课也开始了,大家晚上的时间直接被砍掉了大部分. 希望大家能顺利完成项目吧.剩下时间也不多了,如果程序还存在一些特别的问题和需要优化修改的地方也应该考虑留到下阶段进行了. Memb ...

  2. 20172329 2018-2019《Java程序设计与数据结构》课程总结

    作者:lalalouye(20172329王文彬) 2018-2019年大二Java程序设计与数据结构课程总目录:第一周 第二周 第三周 第四周 第五周 第六周 第七周 第八周 第九周 实验一 实验二 ...

  3. Beta阶段DAY5

    一.提供当天站立式会议照片一张 二.每个人的工作 1.讨论项目每个成员的昨天进展 刘阳航:改进UI,美化界面. 林庭亦:优化代码结构 郑子熙:改进UI,美化界面. 陈文俊:优化代码结构 2.讨论项目每 ...

  4. POJ3177_Redundant Paths

    给你一个无向图,求至少加入多少条边,使得整个图是双联通的. 通过枚举题意,发现重边是不算的,直接去掉. 首先把那些边是桥计算出来,把位于同一个连通分量里面的点缩成一个点(并查集),然后计算缩点后有多少 ...

  5. 【刷题】洛谷 P1402 酒店之王

    题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有固定的q道不同的菜. ...

  6. [洛谷P3829][SHOI2012]信用卡凸包

    题目大意:有$n$张一模一样的信用卡,每个角进行了圆滑处理,问这些卡组成的“凸包”的周长 题解:发现是圆滑处理的圆心围成的凸包加上一个圆周即可 卡点:输入长宽弄反,然后以为是卡精 C++ Code: ...

  7. 【hdu4285】 circuits

    http://acm.hdu.edu.cn/showproblem.php?pid=4285 (题目链接) 题意 求不不能嵌套的回路个数为K的路径方案数. Solution 插头dp,时限卡得太紧了, ...

  8. Ld, -rpath, -rpath-link

    http://blog.csdn.net/xph23/article/details/38157491

  9. spark 调优——基础篇

    开发调优 调优概述 Spark性能优化的第一步,就是要在开发Spark作业的过程中注意和应用一些性能优化的基本原则.开发调优,就是要让大家了解以下一些Spark基本开发原则,包括:RDD lineag ...

  10. 【bzoj4231】回忆树

    题解: 树上的串匹配,模式串的总长$|S|$,令$\overline {S} $为$S$的反串: 对$S$和$\overline {S} $分别建自动机 $u -> v$可以分成三个部分去统计 ...