最近忙着替公司招人好久没写了,荒废了不好意思。

上一章学习了Collection的架构,并阅读了部分源码,这一章开始,我们将对Collection的具体实现进行详细学习。首先学习List。而ArrayList又是List中最为常用的,因此本章先学习ArrayList。先对ArrayList有个整体的认识,然后学习它的源码,深入剖析ArrayList。

1. ArrayList简介

首先看看ArrayList与Collection的关系:

ArrayList的继承关系如下:

java.lang.Object
↳ java.util.AbstractCollection<E>
↳ java.util.AbstractList<E>
↳ java.util.ArrayList<E> public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {}

ArrayList继承了AbstractList,实现了List。它是一个数组队列,相当于动态数组。提供了相关的添加、删除、修改和遍历等功能。

ArrayList实现了RandomAccess接口,即提供了随机访问功能。RandomAccess是Java中用来被List实现,为List提供快速访问功能的。在ArrayList中,我们即可以通过元素的序号来快速获取元素对象,这就是快速随机访问。下文会比较List的“快速随机访问”和使用“Iterator迭代器访问”的效率。

ArrayList实现了Cloneable接口,即覆盖了函数clone(),能被克隆。

ArrayList实现了java.io.Serializable接口,这意味着ArrayList支持序列化,能通过序列化去传输。

和Vector不同,ArrayList中的操作是非线程安全的。所以建议在单线程中使用ArrayList,在多线程中选择Vector或者CopyOnWriteArrayList。

我们先总览下ArrayList的构造函数和API

/****************** ArrayList中的构造函数 ***************/
// 默认构造函数
ArrayList() // capacity是ArrayList的默认容量大小。当由于增加数据导致容量不足时,容量会添加上一次容量大小的一半。
ArrayList(int capacity) // 创建一个包含collection的ArrayList
ArrayList(Collection<? extends E> collection) /****************** ArrayList中的API ********************/
// Collection中定义的API
boolean add(E object)
boolean addAll(Collection<? extends E> collection)
void clear()
boolean contains(Object object)
boolean containsAll(Collection<?> collection)
boolean equals(Object object)
int hashCode()
boolean isEmpty()
Iterator<E> iterator()
boolean remove(Object object)
boolean removeAll(Collection<?> collection)
boolean retainAll(Collection<?> collection)
int size()
<T> T[] toArray(T[] array)
Object[] toArray()
// AbstractCollection中定义的API
void add(int location, E object)
boolean addAll(int location, Collection<? extends E> collection)
E get(int location)
int indexOf(Object object)
int lastIndexOf(Object object)
ListIterator<E> listIterator(int location)
ListIterator<E> listIterator()
E remove(int location)
E set(int location, E object)
List<E> subList(int start, int end)
// ArrayList新增的API
Object clone()
void ensureCapacity(int minimumCapacity)
void trimToSize()
void removeRange(int fromIndex, int toIndex)

ArrayList包含了两个重要的对象:elementData和size。

elementData是Object[]类型的数组,它保存了添加到ArrayList中的元素。实际上,elementData是一个动态数组,我们能通过ArrayList(int initialCapacity)来执行它的初始容量为initialCapacity。如果通过不含参数的构造函数来创建ArrayList,则elementData是一个空数组(后面会调整其大小)。elementData数组的大小会根据ArrayList容量的增长而动态的增长,具体见下面的源码。

size则是动态数组实际的大小。

2. ArrayList源码分析(基于JDK1.7)

下面通过分析ArrayList的源码更加深入的了解ArrayList原理。由于ArrayList是通过数组实现的,所以源码比较容易理解:

篇幅有点长请一定要耐心看,有点心理准备

 package java.util;  

 public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
//序列版本号
private static final long serialVersionUID = 8683452581122892189L; //默认初始化容量
private static final int DEFAULT_CAPACITY = 10; //空数组,用来实例化不带容量大小的构造函数
private static final Object[] EMPTY_ELEMENTDATA = {}; //保存ArrayList中数据的数组
private transient Object[] elementData; //ArrayList中实际数据的数量
private int size; /******************************** Constructor ***********************************/ //ArrayList带容量大小的构造函数
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity]; //新建一个数组初始化elementData
} //不带参数的构造函数
public ArrayList() {
super();
this.elementData = EMPTY_ELEMENTDATA;//使用空数组初始化elementData
} //用Collection来初始化ArrayList
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray(); //将Collection中的内容转换成数组初始化elementData
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} /********************************* Array size ************************************/ //重新“修剪”数组容量大小
public void trimToSize() {
modCount++;
//当ArrayList中的元素个数小于elementData数组大小时,重新修整elementData到size大小
if (size < elementData.length) {
elementData = Arrays.copyOf(elementData, size);
}
} //给数组扩容,该方法是提供给外界调用的,是public的,真正扩容是在下面的private方法里
public void ensureCapacity(int minCapacity) {
int minExpand = (elementData != EMPTY_ELEMENTDATA)
// any size if real element table
? 0
// larger than default for empty table. It's already supposed to be
// at default size.
: DEFAULT_CAPACITY; if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
} private void ensureCapacityInternal(int minCapacity) {
//如果是个空数组
if (elementData == EMPTY_ELEMENTDATA) {
//取minCapacity和10的较大者
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
//如果数组已经有数据了
ensureExplicitCapacity(minCapacity);
} //确保数组容量大于ArrayList中元素个数
private void ensureExplicitCapacity(int minCapacity) {
modCount++; //将“修改统计数”+1 //如果实际数据容量大于数组容量,就给数组扩容
if (minCapacity - elementData.length > 0)
grow(minCapacity);
} //分配的最大数组空间
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; //增大数组空间
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1); //在原来容量的基础上加上 oldCapacity/2
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity; //最少保证容量和minCapacity一样
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity); //最多不能超过最大容量
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
} private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
} //返回ArrayList的实际大小
public int size() {
return size;
} //判断ArrayList是否为空
public boolean isEmpty() {
return size == 0;
} /****************************** Search Operations *************************/ //判断ArrayList是否包含Object o
public boolean contains(Object o) {
return indexOf(o) >= 0;
} //正向查找,返回元素的索引值
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
} //反向查找,返回元素的索引值
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
} /******************************* Clone *********************************/ //克隆函数
public Object clone() {
try {
@SuppressWarnings("unchecked")
ArrayList<E> v = (ArrayList<E>) super.clone();
//将当前ArrayList的全部元素拷贝到v中
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
} /********************************* toArray *****************************/ /**
* 返回一个Object数组,包含ArrayList中所有的元素
* toArray()方法扮演着array-based和collection-based API之间的桥梁
*/
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
} //返回ArrayList的模板数组
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
//如果数组a的大小 < ArrayList的元素个数,
//则新建一个T[]数组,大小为ArrayList元素个数,并将“ArrayList”全部拷贝到新数组中。
if (a.length < size)
return (T[]) Arrays.copyOf(elementData, size, a.getClass()); //如果数组a的大小 >= ArrayList的元素个数,
//则将ArrayList全部拷贝到新数组a中。
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
} /******************** Positional Access Operations ********************/ @SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
} //获取index位置的元素值
public E get(int index) {
rangeCheck(index); //首先判断index的范围是否合法 return elementData(index);
} //将index位置的值设为element,并返回原来的值
public E set(int index, E element) {
rangeCheck(index); E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
} //将e添加到ArrayList中
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
} //将element添加到ArrayList的指定位置
public void add(int index, E element) {
rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!!
//将index以及index之后的数据复制到index+1的位置往后,即从index开始向后挪了一位
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element; //然后在index处插入element
size++;
} //删除ArrayList指定位置的元素
public E remove(int index) {
rangeCheck(index); modCount++;
E oldValue = elementData(index); int numMoved = size - index - 1;
if (numMoved > 0)
//向左挪一位,index位置原来的数据已经被覆盖了
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
//多出来的最后一位删掉
elementData[--size] = null; // clear to let GC do its work return oldValue;
} //删除ArrayList中指定的元素
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
} //private的快速删除与上面的public普通删除区别在于,没有进行边界判断以及不返回删除值
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
} //清空ArrayList,将全部元素置为null
public void clear() {
modCount++; // clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null; size = 0;
} //将集合C中所有的元素添加到ArrayList中
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
//在原来数组的后面添加c中所有的元素
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
} //从index位置开始,将集合C中所欲的元素添加到ArrayList中
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index); Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index;
if (numMoved > 0)
//将index开始向后的所有数据,向后移动numNew个位置,给新插入的数据腾出空间
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
//将集合C中的数据插到刚刚腾出的位置
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
} //删除从fromIndex到toIndex之间的数据,不包括toIndex位置的数据
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved); // clear to let GC do its work
int newSize = size - (toIndex-fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
} //范围检测
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} //add和addAll方法中的范围检测
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
} //删除ArrayList中所有集合C中包含的数据
public boolean removeAll(Collection<?> c) {
return batchRemove(c, false);
} //删除ArrayList中除了集合C中包含的数据外的其他所有数据
public boolean retainAll(Collection<?> c) {
return batchRemove(c, true);
} //批量删除
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
//官方的注释是为了保持和AbstractCollection的兼容性
//我的理解是上面c.contains抛出了异常,导致for循环终止,那么必然会导致r != size
//所以0-w之间是需要保留的数据,同时从w索引开始将剩下没有循环的数据(也就是从r开始的)拷贝回来,也保留
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
//for循环完毕,检测了所有的元素
//0-w之间保存了需要留下的数据,w开始以及后面的数据全部清空
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
} /***************************** Writer and Read Object *************************/ //java.io.Serializable的写入函数
//将ArrayList的“容量、所有的元素值”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone()
//写入“数组的容量”,保持与clone()的兼容性
s.writeInt(size); //写入“数组的每一个元素”
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
} if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
} //java.io.Serializable的读取函数:根据写入方式读出
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff
s.defaultReadObject(); //从输入流中读取ArrayList的“容量”
s.readInt(); // ignored if (size > 0) {
// be like clone(), allocate array based upon size not capacity
ensureCapacityInternal(size); Object[] a = elementData;
//从输入流中将“所有元素值”读出
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
} /******************************** Iterators ************************************/ /**
* 该部分的方法重写了AbstractList抽象类中Iterator部分的方法,因为ArrayList继承
* 了AbstractList,基本大同小异,只是这里针对本类的数组,思想与AbstractList一致
* 可以参照上一章Collection架构与源码分析的AbatractList部分
*/
public ListIterator<E> listIterator(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
} public ListIterator<E> listIterator() {
return new ListItr(0);
} public Iterator<E> iterator() {
return new Itr();
} private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount; public boolean hasNext() {
return cursor != size;
} @SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
} public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
} private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
} public boolean hasPrevious() {
return cursor != 0;
} public int nextIndex() {
return cursor;
} public int previousIndex() {
return cursor - 1;
} @SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
} public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} public void add(E e) {
checkForComodification(); try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
} public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
} static void subListRangeCheck(int fromIndex, int toIndex, int size) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if (toIndex > size)
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
} private class SubList extends AbstractList<E> implements RandomAccess {
private final AbstractList<E> parent;
private final int parentOffset;
private final int offset;
int size; SubList(AbstractList<E> parent,
int offset, int fromIndex, int toIndex) {
this.parent = parent;
this.parentOffset = fromIndex;
this.offset = offset + fromIndex;
this.size = toIndex - fromIndex;
this.modCount = ArrayList.this.modCount;
} public E set(int index, E e) {
rangeCheck(index);
checkForComodification();
E oldValue = ArrayList.this.elementData(offset + index);
ArrayList.this.elementData[offset + index] = e;
return oldValue;
} public E get(int index) {
rangeCheck(index);
checkForComodification();
return ArrayList.this.elementData(offset + index);
} public int size() {
checkForComodification();
return this.size;
} public void add(int index, E e) {
rangeCheckForAdd(index);
checkForComodification();
parent.add(parentOffset + index, e);
this.modCount = parent.modCount;
this.size++;
} public E remove(int index) {
rangeCheck(index);
checkForComodification();
E result = parent.remove(parentOffset + index);
this.modCount = parent.modCount;
this.size--;
return result;
} protected void removeRange(int fromIndex, int toIndex) {
checkForComodification();
parent.removeRange(parentOffset + fromIndex,
parentOffset + toIndex);
this.modCount = parent.modCount;
this.size -= toIndex - fromIndex;
} public boolean addAll(Collection<? extends E> c) {
return addAll(this.size, c);
} public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);
int cSize = c.size();
if (cSize==0)
return false; checkForComodification();
parent.addAll(parentOffset + index, c);
this.modCount = parent.modCount;
this.size += cSize;
return true;
} public Iterator<E> iterator() {
return listIterator();
} public ListIterator<E> listIterator(final int index) {
checkForComodification();
rangeCheckForAdd(index);
final int offset = this.offset; return new ListIterator<E>() {
int cursor = index;
int lastRet = -1;
int expectedModCount = ArrayList.this.modCount; public boolean hasNext() {
return cursor != SubList.this.size;
} @SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= SubList.this.size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[offset + (lastRet = i)];
} public boolean hasPrevious() {
return cursor != 0;
} @SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[offset + (lastRet = i)];
} public int nextIndex() {
return cursor;
} public int previousIndex() {
return cursor - 1;
} public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
SubList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.set(offset + lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} public void add(E e) {
checkForComodification(); try {
int i = cursor;
SubList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} final void checkForComodification() {
if (expectedModCount != ArrayList.this.modCount)
throw new ConcurrentModificationException();
}
};
} public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, offset, fromIndex, toIndex);
} private void rangeCheck(int index) {
if (index < 0 || index >= this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} private void rangeCheckForAdd(int index) {
if (index < 0 || index > this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+this.size;
} private void checkForComodification() {
if (ArrayList.this.modCount != this.modCount)
throw new ConcurrentModificationException();
}
}
}

总结一下:

1). ArrayList实际上是通过一个数组去保存数据的,当我们构造ArrayList时,如果使用默认构造函数,最后ArrayList的默认容量大小是10。

2). 当ArrayList容量不足以容纳全部元素时,ArrayList会自动扩张容量,新的容量 = 原始容量 + 原始容量 / 2。

3). ArrayList的克隆函数,即是将全部元素克隆到一个数组中。

4. ArrayList实现java.io.Serializable的方式。当写入到输出流时,先写入“容量”,再依次写出“每一个元素”;当读出输入流时,先读取“容量”,再依次读取“每一个元素”。

3. ArrayList遍历方式

ArrayList支持三种遍历方式,下面我们逐个讨论:

1). 通过迭代器遍历。即Iterator迭代器。

Integer value = null;
Iterator it = list.iterator();
while (it.hasNext()) {
value = (Integer)it.next();
}

2). 随机访问,通过索引值去遍历。由于ArrayList实现了RandomAccess接口,所以它支持通过索引值去随机访问元素。

Integer value = null;
int size = list.size();
for (int i = 0; i < size; i++) {
value = (Integer)list.get(i);
}

3). 通过for循环遍历。

Integer value = null;
for (Integer integ : list) {
value = integ;
}

下面写了一个测试用例,比较这三种遍历方式的效率:

import java.util.*;  

/*
* @description ArrayList三种遍历方式效率的测试
* @author eson_15
*/
public class ArrayListRandomAccessTest { public static void main(String[] args) {
List<Integer> list = new ArrayList<Integer>();
for (int i=0; i<500000; i++)
list.add(i);
isRandomAccessSupported(list);//判断是否支持RandomAccess
iteratorThroughRandomAccess(list) ;
iteratorThroughIterator(list) ;
iteratorThroughFor(list) ; } private static void isRandomAccessSupported(List<Integer> list) {
if (list instanceof RandomAccess) {
System.out.println("RandomAccess implemented!");
} else {
System.out.println("RandomAccess not implemented!");
} } public static void iteratorThroughRandomAccess(List<Integer> list) { long startTime;
long endTime;
startTime = System.currentTimeMillis();
for (int i=0; i<list.size(); i++) {
list.get(i);
}
endTime = System.currentTimeMillis();
long interval = endTime - startTime;
System.out.println("RandomAccess遍历时间:" + interval+" ms");
} public static void iteratorThroughIterator(List<Integer> list) { long startTime;
long endTime;
startTime = System.currentTimeMillis();
for(Iterator<Integer> it = list.iterator(); it.hasNext(); ) {
it.next();
}
endTime = System.currentTimeMillis();
long interval = endTime - startTime;
System.out.println("Iterator遍历时间:" + interval+" ms");
} @SuppressWarnings("unused")
public static void iteratorThroughFor(List<Integer> list) { long startTime;
long endTime;
startTime = System.currentTimeMillis();
for(Object obj : list)
;
endTime = System.currentTimeMillis();
long interval = endTime - startTime;
System.out.println("For循环遍历时间:" + interval+" ms");
}
}

每次执行的结果会有一点点区别,在这里我统计了6次执行结果,见下表:

RandomAccess(ms)

Iterator(ms)

For(ms)

第一次

5

8

7

第二次

4

7

7

第三次

5

8

10

第四次

5

7

6

第五次

5

8

7

第六次

5

7

6

平均

4.8

7.5

7.1

由此可见,遍历ArrayList时,使用随机访问(即通过索引号访问)效率最高,而使用迭代器的效率最低。

4. toArray()异常问题

当我们调用ArrayList中的toArray()方法时,可能会遇到"java.lang.ClassCastException"异常的情况,下面来讨论下出现的原因:

ArrayList中提供了2个toArray()方法:

Object[] toArray()
<T> T[] toArray(T[] contents)

调用toArray()函数会抛出"java.lang.ClassCastException"异常,但是调用toArray(T[] contents)能正常返回T[]。toArray()会抛出异常是因为toArray()返回的是Object[]数组,将Object[]转换为其它类型(比如将Object[]转换为Integer[])则会抛出"java.lang.ClassCastException"异常,因为java不支持向下转型。解决该问题的办法是调用<T> T[] toArray(T[] contents),而不是Object[] toArray()。

调用<T> T[] toArray(T[] contents)返回T[]可以通过以下几种方式实现:

// toArray(T[] contents)调用方式一
public static Integer[] vectorToArray1(ArrayList<Integer> v) {
Integer[] newText = new Integer[v.size()];
v.toArray(newText);
return newText;
} // toArray(T[] contents)调用方式二。<span style="color:#FF6666;">最常用!</span>
public static Integer[] vectorToArray2(ArrayList<Integer> v) {
Integer[] newText = (Integer[])v.toArray(new Integer[v.size()]);
return newText;
} // toArray(T[] contents)调用方式三
public static Integer[] vectorToArray3(ArrayList<Integer> v) {
Integer[] newText = new Integer[v.size()];
Integer[] newStrings = (Integer[])v.toArray(newText);
return newStrings;
}

三种方式都大同小异。

ArrayList源码就讨论这么多,如有错误,欢迎留言指正~

java集合框架03——ArrayList和源码分析的更多相关文章

  1. java集合框架04——LinkedList和源码分析

    上一章学习了ArrayList,并分析了其源码,这一章我们将对LinkedList的具体实现进行详细的学习.依然遵循上一章的步骤,先对LinkedList有个整体的认识,然后学习它的源码,深入剖析Li ...

  2. java集合系列之ArrayList源码分析

    java集合系列之ArrayList源码分析(基于jdk1.8) ArrayList简介 ArrayList时List接口的一个非常重要的实现子类,它的底层是通过动态数组实现的,因此它具备查询速度快, ...

  3. Java集合系列[1]----ArrayList源码分析

    本篇分析ArrayList的源码,在分析之前先跟大家谈一谈数组.数组可能是我们最早接触到的数据结构之一,它是在内存中划分出一块连续的地址空间用来进行元素的存储,由于它直接操作内存,所以数组的性能要比集 ...

  4. Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例

    java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...

  5. java集合系列之LinkedList源码分析

    java集合系列之LinkedList源码分析 LinkedList数据结构简介 LinkedList底层是通过双端双向链表实现的,其基本数据结构如下,每一个节点类为Node对象,每个Node节点包含 ...

  6. Java集合系列[4]----LinkedHashMap源码分析

    这篇文章我们开始分析LinkedHashMap的源码,LinkedHashMap继承了HashMap,也就是说LinkedHashMap是在HashMap的基础上扩展而来的,因此在看LinkedHas ...

  7. Java集合框架之ArrayList浅析

    Java集合框架之ArrayList浅析 一.ArrayList综述: 位于java.util包下的ArrayList是java集合框架的重要成员,它就是传说中的动态数组,用MSDN中的说法,就是Ar ...

  8. Java——集合框架之ArrayList,LinkedList,迭代器Iterator

    概述--集合框架 Java语言的设计者对常用的数据结构和算法做了一些规范(接口)和实现(具体实现接口的类).所有抽象出来的数据结构和操作(算法)统称为Java集合框架(Java Collection ...

  9. Java集合系列:-----------03ArrayList源码分析

    上一章,我们学习了Collection的架构.这一章开始,我们对Collection的具体实现类进行讲解:首先,讲解List,而List中ArrayList又最为常用.因此,本章我们讲解ArrayLi ...

随机推荐

  1. Snail—Hibernate反向生成实体类及配置文件

    今天学习了Hibernate的反向生成类文件 第一步.打开myeclipse中的database视图,找到对应的表,选中后右键单击. watermark/2/text/aHR0cDovL2Jsb2cu ...

  2. JDBC操作数据库的批处理

    在JDBC开发中,操作数据库需要与数据库建立连接,然后将要执行的SQL语句传送到数据库服务器,最后关闭数据库连接,都是按照这样一个流程进行操作的.如果按照该流程执行多条SQL语句,那么就需要建立多个数 ...

  3. iOS开发-UITableView表格优化

    之前的一篇文章大概讲述了一下UITableView的使用,UITableView在iOS的地位和ListView在Android中的地位基本上算是不相上下,关于ListView的优化网上的也有很多文章 ...

  4. Android组件之自定义ContentProvider

    Android的数据存储有五种方式Shared Preferences.网络存储.文件存储.外储存储.SQLite,一般这些存储都只是在单独的一个应用程序之中达到一个数据的共享,有时候我们需要操作其他 ...

  5. Jump Game leetcode java

    题目: Given an array of non-negative integers, you are initially positioned at the first index of the ...

  6. Adapter 适配器模式 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  7. html 空白汉字占位符

     可以看作一个空白的汉字 == 普通的英文半角空格   ==   ==   == no-break space (普通的英文半角空格但不换行)   == 中文全角空格 (一个中文宽度)   ==   ...

  8. maven 下载源码

    mvn eclipse:eclipse  -DdownloadSource=true

  9. sqlplus的使用

    1.连接数据库 sqlplus / as sysdba 2.连接到远程数据库 sqlplus 用户名/密码@服务命名 3.遇到&会当成变量,一般是不需要的,可以关掉 SQL> set d ...

  10. Java总结:Java 流(Stream)、文件(File)和IO

    更新时间:2018-1-7 12:27:21 更多请查看在线文集:http://android.52fhy.com/java/index.html java.io 包几乎包含了所有操作输入.输出需要的 ...