https://www.lydsy.com/JudgeOnline/problem.php?id=4826

年少不知空间贵,相顾mle空流泪。

和上一道主席树求的东西差不多,求两种对

1. max(a[(i,j)])<min(a[i],a[j]),[i,j]这一对贡献p1.

2. max(a[(i,j)])在a[i],a[j]之间,[i,j]这一对贡献p2.

第一种和bzoj3956那道一样,但是因为是排列所以没必要去重了。

第二种同样是单调栈求lp,rp,每个位置的lp分别和[ i+1 , rp-1 ], rp分别和[ lp+1 , i-1 ], 构成了贡献p2的数对。

因此贡献为p2的数对要区间修改,因为方便(不用downdata)(其实是因为我抄的代码就是标记永久化)所以写了标记永久化,标记永久化真的挺好用的嘻嘻。

感觉写了这道题终于有点摸到主席树的门路了,其实就是找和维护两个区间进行限制的值(找和维护一个二维块),一层线段树一层前缀和(只是有传递性不一定是实际意义的和)。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define LL long long
const int maxn=;
LL n,m,p1,p2;
LL a[maxn]={},sta[maxn]={},tail=;
LL lp[maxn]={},rp[maxn]={},rt[maxn]={};
LL lc[maxn*]={},rc[maxn*]={},siz[maxn*]={},ad[maxn*]={},tot=;
struct nod{
LL x,l,r,v;
}e[maxn*];
LL cnt=;
bool mcmp(nod aa,nod bb){ return aa.x<bb.x; }
LL read(){
LL w=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){w=w*+ch-'';ch=getchar();}
return w*f;
}
void build(LL &x,LL y,LL l,LL r,LL z,LL zl,LL zr){
x=++tot;lc[x]=lc[y];rc[x]=rc[y];ad[x]=ad[y];siz[x]=siz[y]+z*(zr-zl+);
if(zl==l&&r==zr){ad[x]+=z;return;}
LL mid=(l+r)/;
if(zr<=mid)build(lc[x],lc[y],l,mid,z,zl,zr);
else if(zl>mid) build(rc[x],rc[y],mid+,r,z,zl,zr);
else {
build(lc[x],lc[y],l,mid,z,zl,mid);
build(rc[x],rc[y],mid+,r,z,mid+,zr);
}
}
LL getsum(LL x,LL y,LL l,LL r,LL zl,LL zr){
if(zl==l&&r==zr)return siz[y]-siz[x];
LL mid=(l+r)/,ans=(ad[y]-ad[x])*(zr-zl+);
if(zr<=mid)return ans+getsum(lc[x],lc[y],l,mid,zl,zr);
else if(zl>mid) return ans+getsum(rc[x],rc[y],mid+,r,zl,zr);
else {
return ans+getsum(lc[x],lc[y],l,mid,zl,mid)+getsum(rc[x],rc[y],mid+,r,mid+,zr);
}
}
//以上主席树
inline void fir(){
LL i;
a[]=a[n+]=(<<);
for(i=;i<=n;++i){
while(a[sta[tail]]<=a[i])tail--;
lp[i]=sta[tail];sta[++tail]=i;
}
sta[]=n+;tail=;
for(i=n;i>;--i){
while(a[sta[tail]]<=a[i])tail--;
rp[i]=sta[tail];sta[++tail]=i;
}
}
inline void init(LL x,LL l,LL r,LL v){
e[++cnt].x=x;e[cnt].l=l;e[cnt].r=r;e[cnt].v=v;
}
inline void fir2(){
LL i,j;
for(i=;i<=n;++i){
if(lp[i]!=&&rp[i]!=n+)init(lp[i],rp[i],rp[i],p1);
if(i<n)init(i,i+,i+,p1);
if(lp[i]!=&&rp[i]-i>)init(lp[i],i+,rp[i]-,p2);
if(rp[i]!=n+&&i-lp[i]>)init(rp[i],lp[i]+,i-,p2);
}
sort(e+,e+cnt+,mcmp);
for(i=j=;i<=n;++i){
rt[i]=rt[i-];
for(;e[j].x==i&&j<=cnt;++j)build(rt[i],rt[i],,n,e[j].v,e[j].l,e[j].r);
}
}
int main(){
LL i,x,y,ans=;
n=read();m=read();p1=read();p2=read();
for(i=;i<=n;++i)a[i]=read();
fir(); fir2();
for(i=;i<=m;++i){
x=read();y=read();
if(x>y)swap(x,y);
ans=getsum(rt[x-],rt[y],,n,x,y);
printf("%lld\n",ans);
}
return ;
}

BZOJ 4826: [Hnoi2017]影魔 单调栈 主席树的更多相关文章

  1. BZOJ 4826: [Hnoi2017]影魔 单调栈+可持久化线段树

    Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样 的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个 ...

  2. [BZOJ4826] [HNOI2017] 影魔 单调栈 主席树

    题面 因为是一个排列,所以不会有重复的.如果有重复就没法做了.一开始没有仔细看题目想了半天. 发现,如果是第一种情况,那么边界\(l\)和\(r\)就应该分别是整个区间的最大值和次大值. 然后,对于那 ...

  3. bzoj 4826: [Hnoi2017]影魔 [主席树 单调栈]

    4826: [Hnoi2017]影魔 题意:一个排列,点对\((i,j)\),\(p=max(i+1,j-1)\),若\(p<a_i,a_j\)贡献p1,若\(p\)在\(a_1,a_2\)之间 ...

  4. BZOJ 4826 [Hnoi2017]影魔 ——扫描线 单调栈

    首先用单调栈和扫描线处理出每一个数左面最近的比他大的数在$l[i]$,右面最近的比他大的数$r[i]$. 然后就可以考虑每种贡献是在什么时候产生的. 1.$(l[i],r[i])$产生$p1$的贡献 ...

  5. 【bzoj4826】[Hnoi2017]影魔 单调栈+可持久化线段树

    题目描述 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵魂,都有着自己 ...

  6. ●BZOJ 4826 [Hnoi2017]影魔

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4826 题解: 主席树,单调栈 以前还没做过这种维护信息的题,感觉好奇妙. 每对相邻的两个数所 ...

  7. 【BZOJ4826】[Hnoi2017]影魔 单调栈+扫描线

    [BZOJ4826][Hnoi2017]影魔 Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝 ...

  8. bzoj 4826: [Hnoi2017]影魔【单调栈+树状数组+扫描线】

    参考:https://www.cnblogs.com/lcf-2000/p/6789680.html 这是一个相对码量少的做法,用到了区间修改区间查询的树状数组,详见:www.cnblogs.com/ ...

  9. BZOJ:4826: [Hnoi2017]影魔

    Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵 ...

随机推荐

  1. ECMAScript——(二)

    1.语法 区分大小写 变量是弱类型(定义变量时只用 var 运算符,可以将它初始化为任意值.) 每行结尾的分号可有可无(建议写上) 注释与Java一样 括号表示代码块 2.变量 变量可以不用声明,变量 ...

  2. 【逆向知识】开发WinDBG扩展DLL

    如何开发WinDbg扩展DLL WinDbg扩展DLL是一组导出的回调函数,用于实现用户定义的命令.以便从内存转储中提取特定的信息.扩展dll由调试器引擎加载,可以在执行用户模式或内核模式调试时提供自 ...

  3. Shell-输入密码转换为*

    Code: read -p "请输入使用者都名称:" USER echo -e "请输入使用者密码: \c" while : ;do char=` #这里是反引 ...

  4. ArcGIS RunTime Sdk +WPF 基础地图显示

    1 简单的地图展示 ArcGISRunTime 的平面地图展示主要依赖MapView这个控件,MapView是地图的容器,Map主要是图层的集合 (注:三维场景的显示主要依赖SceneView这个控件 ...

  5. 创建自己的maven模板

    概述 使用maven创建项目时,提供的基础的工程太简单不是想要的,并且创建过程很慢,使用起来体验不好.如果可以根据自己的需要,直接创建模板,然后进行类似项目拷贝的工作,那就完美.幸运的是,maven提 ...

  6. java 闭包与回调

    闭包(closure)是一个可调用的对象,它记录了一些信息,这些信息来自于创建它的作用域. 内部类是面向对象的闭包,因为它不仅包含外围类对象(创建内部类的作用域)的信息,还自动拥有一个指向此外围类对象 ...

  7. ZooKeeper的基本概念(二)

    第一篇博文,我们对Zookeeper有了一个简单的认识,而且比较浅显,易懂,这篇博文,我们了解它的基本概念,如下图所示: 了解它的基本概念,有助于我们后面的学习,虽然今天的文章都是概念性质的内容,但是 ...

  8. 阿里百川码力APP监控 来了!

    阿里百川码力APP监控  来了!这个APP监控 和手淘一起成长历经千锤百炼 走过千BUG万坑如今百川起产品   为了让你的APP更好 用户更爽! 在移动互联网时代,一款应用是否成功,用户体验是一个关键 ...

  9. Mac OS 下安装mysqlclient报“mysql_config not found”的解决

    如问题所示,应该是你没有将mysql_config所在文件夹加入系统的PATH路径,解决方案下: 1.第一步找到你的mysql_config所在位置 1.1. 如果是直接安装mysql,所在位置应该是 ...

  10. Python学习:socket.gaierror: [Errno -8]

    在终端内打开python模式,利用如下代码查询本机hostname,这里举例为“xxMacBookPro.local”: import socket socket.gethostname() 在/et ...