2018.07.04 BZOJ1336&&1337: Balkan2002Alien最小圆覆盖
1336: [Balkan2002]Alien最小圆覆盖
1337: 最小圆覆盖
Time Limit: 1 Sec Memory Limit: 162 MBSec Special Judge
Description
给出N个点,让你画一个最小的包含所有点的圆。
Input
先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000.0)
Output
输出圆的半径,及圆心的坐标
Sample Input
6
8.0 9.0
4.0 7.5
1.0 2.0
5.1 8.7
9.0 2.0
4.5 1.0
Sample Output
5.00
5.00 5.00
这两道题是最小圆覆盖的裸题,这里主要讲讲求最小圆覆盖的思路。
最小圆覆盖问题就是让你求一个最小的圆使得它能够刚好覆盖掉给出的点。本蒟蒻学习的是一种期望效率O(n)" role="presentation" style="position: relative;">O(n)O(n)的算法。
那么我们怎么做呢?
首先,我们假设前i−1" role="presentation" style="position: relative;">i−1i−1个点已经被现在的圆给覆盖掉了,现在正在处理第i" role="presentation" style="position: relative;">ii个点,那么我们check" role="presentation" style="position: relative;">checkcheck一波,如果当前点在圆外,我们就重构覆盖前i" role="presentation" style="position: relative;">ii个点的最小覆盖圆,具体操作就是先以i" role="presentation" style="position: relative;">ii为圆心作圆,然后从前i−1" role="presentation" style="position: relative;">i−1i−1个点中找一个点j" role="presentation" style="position: relative;">jj使得j" role="presentation" style="position: relative;">jj在圆外,此时最小覆盖圆应该为i,j" role="presentation" style="position: relative;">i,ji,j中点,然后我们再从前j−1" role="presentation" style="position: relative;">j−1j−1个点中找一个点k" role="presentation" style="position: relative;">kk使得k" role="presentation" style="position: relative;">kk在圆外,这时最小覆盖圆自然应该是三角形ijk" role="presentation" style="position: relative;">ijkijk的外接圆。我们一直这样操作到前i" role="presentation" style="position: relative;">ii个点都能够check" role="presentation" style="position: relative;">checkcheck成功为止。
但这样的话最坏情况不应该是O(n3)" role="presentation" style="position: relative;">O(n3)O(n3)吗?是的,因此我们要在最开始的时候将点随机打乱,这样的话期望的效率就应该是O(n)" role="presentation" style="position: relative;">O(n)O(n)的了。还有就是注意T1336" role="presentation" style="position: relative;">T1336T1336应该保留10" role="presentation" style="position: relative;">1010位小数而不是题目上说的2" role="presentation" style="position: relative;">22位。
T1336" role="presentation" style="position: relative;">T1336T1336代码:
#include<bits/stdc++.h>
#define N 100005
using namespace std;
struct point{double x,y;}p[N],O;
struct line{double a,b,c;};
double r;
inline double mul(double x){return x*x;}
inline double dis(point x,point y){return sqrt(mul(x.x-y.x)+mul(x.y-y.y));}
inline bool in_check(point x){return dis(O,x)<=r;}
inline point calc(line a,line b){return point{(b.c*a.b-a.c*b.b)/(a.a*b.b-a.b*b.a),(b.c*a.a-a.c*b.a)/(a.b*b.a-b.b*a.a)};}
int main(){
int n;
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%lf%lf",&p[i].x,&p[i].y);
random_shuffle(p+1,p+n+1);
r=0;
for(int i=1;i<=n;++i){
if(in_check(p[i]))continue;
O.x=p[i].x,O.y=p[i].y,r=0;
for(int j=1;j<i;++j){
if(in_check(p[j]))continue;
O.x=(p[i].x+p[j].x)/2,O.y=(p[i].y+p[j].y)/2;
r=dis(O,p[i]);
for(int k=1;k<j;++k){
if(in_check(p[k]))continue;
O=calc(line{2*(p[i].x-p[k].x),2*(p[i].y-p[k].y),mul(p[k].x)+mul(p[k].y)-mul(p[i].x)-mul(p[i].y)},line{2*(p[i].x-p[j].x),2*(p[i].y-p[j].y),mul(p[j].x)+mul(p[j].y)-mul(p[i].x)-mul(p[i].y)});
r=dis(p[i],O);
}
}
}
printf("%.10lf\n%.10lf %.10lf",r,O.x,O.y);
return 0;
}
T1337" role="presentation" style="position: relative;">T1337T1337代码:
#include<bits/stdc++.h>
#define N 100005
using namespace std;
struct point{double x,y;}p[N],O;
struct line{double a,b,c;};
double r;
inline double mul(double x){return x*x;}
inline double dis(point x,point y){return sqrt(mul(x.x-y.x)+mul(x.y-y.y));}
inline bool in_check(point x){return dis(O,x)<=r;}
inline point calc(line a,line b){return point{(b.c*a.b-a.c*b.b)/(a.a*b.b-a.b*b.a),(b.c*a.a-a.c*b.a)/(a.b*b.a-b.b*a.a)};}
int main(){
int n;
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%lf%lf",&p[i].x,&p[i].y);
random_shuffle(p+1,p+n+1);
r=0;
for(int i=1;i<=n;++i){
if(in_check(p[i]))continue;
O.x=p[i].x,O.y=p[i].y,r=0;
for(int j=1;j<i;++j){
if(in_check(p[j]))continue;
O.x=(p[i].x+p[j].x)/2,O.y=(p[i].y+p[j].y)/2;
r=dis(O,p[i]);
for(int k=1;k<j;++k){
if(in_check(p[k]))continue;
O=calc(line{2*(p[i].x-p[k].x),2*(p[i].y-p[k].y),mul(p[k].x)+mul(p[k].y)-mul(p[i].x)-mul(p[i].y)},line{2*(p[i].x-p[j].x),2*(p[i].y-p[j].y),mul(p[j].x)+mul(p[j].y)-mul(p[i].x)-mul(p[i].y)});
r=dis(p[i],O);
}
}
}
printf("%.3lf",r);
return 0;
}
2018.07.04 BZOJ1336&&1337: Balkan2002Alien最小圆覆盖的更多相关文章
- BZOJ1336 Balkan2002 Alien最小圆覆盖 【随机增量法】*
BZOJ1336 Balkan2002 Alien最小圆覆盖 Description 给出N个点,让你画一个最小的包含所有点的圆. Input 先给出点的个数N,2<=N<=100000, ...
- 2018.07.04 BZOJ 2823: AHOI2012信号塔(最小圆覆盖)
2823: [AHOI2012]信号塔 Time Limit: 10 Sec Memory Limit: 128 MB Description 在野外训练中,为了确保每位参加集训的成员安全,实时的掌握 ...
- Bzoj 1336&1337 Alien最小圆覆盖
1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec Memory Limit: 162 MBSec Special Judge Submit: 1473 ...
- bzoj1336: [Balkan2002]Alien最小圆覆盖
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1336 1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 ...
- 2018.07.04 POJ 1265 Area(计算几何)
Area Time Limit: 1000MS Memory Limit: 10000K Description Being well known for its highly innovative ...
- 2018.07.04 POJ 1696 Space Ant(凸包卷包裹)
Space Ant Time Limit: 1000MS Memory Limit: 10000K Description The most exciting space discovery occu ...
- 2018.07.04 POJ 1113 Wall(凸包)
Wall Time Limit: 1000MS Memory Limit: 10000K Description Once upon a time there was a greedy King wh ...
- 2018.07.04 POJ 1654 Area(简单计算几何)
Area Time Limit: 1000MS Memory Limit: 10000K Description You are going to compute the area of a spec ...
- 2018.07.04 POJ 3304 Segments(简单计算几何)
Segments Time Limit: 1000MS Memory Limit: 65536K Description Given n segments in the two dimensional ...
随机推荐
- c++builder 6 远程调试
Delphi7环境 一.目标远程机器: 安装服务光盘里有,单独安装,启动,启动后目标机的托盘图标中会出现一个小“虫子”debug的图标 bordbg61.exe D:\Program Files (x ...
- EOF与子过程返回
在2000及其以上系统,P处理语句GOTO新增了:EOF系统标签,意思是移动到当前P处理文件的结尾,EOF==END OF FILE的缩写,意为文件结尾,主要表现形式为:GOTO :EOFOR ...
- centor os 安装nginx
安装nginx和health check wget http://nginx.org/download/nginx-1.4.5.tar.gz git clone https://github.com/ ...
- JSTL标签库学习记录2-fmt
fmt的标签为辅助性功能标签 设置编码 <fmt:requestEncoding value=""> 国际化相关 <fmt:setLocale value=&qu ...
- js中声明函数的方法
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- java多线程实例(2)
public class ThreadDemo05 { public static void main(String args[]) { // 四个售票点应该控制同一个资源 Demo d = new ...
- Null Hypothesis and Alternate Hypothesis
1.Null Hypothesis Overview 零假设,H0是普遍接受的事实;这与备择假设(alternate hypothesis)正好相反.研究人员努力否定.驳斥零假设.研究人员提出了另一种 ...
- afinal框架下 ViewInject的使用
1.可以在BaseActivity界面onCreate 方法setContentView后加上该语句. initInjectedView(this); 2.@ViewInject(id=R.id.v_ ...
- oracle杀掉执行的死循环存储过程
select * from v$db_object_cache where locks > 0 and pins > 0 and type='PROCEDURE'; select b.si ...
- 第五章 二叉树(e5)重构