图说十大数据挖掘算法(一)K最近邻算法
如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法。
先来一张图,请分辨它是什么水果
很多同学不假思索,直接回答:“菠萝”!!!
仔细看看同学们,这是菠萝么?那再看下边这这张图。
这两个水果又是什么呢?
这就是菠萝与凤梨的故事,下边即将用菠萝和凤梨,给大家讲述怎么用一个算法来知道这是个什么水果的过程,也就是什么是K最近邻算法。
(给非吃货同学们补充一个生活小常识,菠萝的叶子有刺,凤梨没有。菠萝的凹槽处是黄色的,而凤梨的凹槽处是绿色的,以后千万不要买错哦!!!)
上边这张图中,我们定义了两个维度的特征:
一个是叶子是否有刺
一个是凹槽处是否的颜色
问:一个新的水果来了,我们怎么判断他是什么水果呢?
方法如下:
(看这个神秘水果与哪个水果的举例近。同等举例,看离它最近的水果中,哪个水果多)
根据上图中,我们判断,这个神秘水果那就是菠萝啦,原因是离它近的水果中菠萝比凤梨多。
相信到这里,大家都已经明白了什么是K最近邻算法了吧!
假设我们有3中不知名的水果
我们现在根据其大小和颜色的特征,把它们放入图表中
那如我们如何判断他们有多像呢?
具体的计算,可以使用毕达哥拉斯公式
那现在来计算水果A和水果B之间的距离
最后的计算结果为1
那么同理,如果要让你去做一个推荐系统,我们可以把人的用户画像放在一个表格里
如果我们给其中一个人推荐他可能感兴趣的书、电影、美食等,就可以看一下离他最近距离的这些人都在做什么,然后就套用下边的公式就可以了
无论多少维度,直接套用就可以了。
图说算法,是不是非常的简单就理解了KNN。
图说十大数据挖掘算法(一)K最近邻算法的更多相关文章
- 机器学习——十大数据挖掘之一的决策树CART算法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法. CART算法全称是Classification ...
- 【算法】K最近邻算法(K-NEAREST NEIGHBOURS,KNN)
K最近邻算法(k-nearest neighbours,KNN) 算法 对一个元素进行分类 查看它k个最近的邻居 在这些邻居中,哪个种类多,这个元素有更大概率是这个种类 使用 使用KNN来做两项基本工 ...
- 分类算法——k最近邻算法(Python实现)(文末附工程源代码)
kNN算法原理 k最近邻(k-Nearest Neighbor)算法是比较简单的机器学习算法.它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本在特征空间中的k个最近邻(最相似)的样 ...
- PCB 加投率计算实现基本原理--K最近邻算法(KNN)
PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那 ...
- 《算法图解》——第十章 K最近邻算法
第十章 K最近邻算法 1 K最近邻(k-nearest neighbours,KNN)——水果分类 2 创建推荐系统 利用相似的用户相距较近,但如何确定两位用户的相似程度呢? ①特征抽取 对水果 ...
- 12、K最近邻算法(KNN算法)
一.如何创建推荐系统? 找到与用户相似的其他用户,然后把其他用户喜欢的东西推荐给用户.这就是K最近邻算法的分类作用. 二.抽取特征 推荐系统最重要的工作是:将用户的特征抽取出来并转化为度量的数字,然后 ...
- [笔记]《算法图解》第十章 K最近邻算法
K最近邻算法 简称KNN,计算与周边邻居的距离的算法,用于创建分类系统.机器学习等. 算法思路:首先特征化(量化) 然后在象限中选取目标点,然后通过目标点与其n个邻居的比较,得出目标的特征. 余弦相似 ...
- K最近邻算法项目实战
这里我们用酒的分类来进行实战练习 下面来代码 1.把酒的数据集载入到项目中 from sklearn.datasets import load_wine #从sklearn的datasets模块载入数 ...
- 机器学习【一】K最近邻算法
K最近邻算法 KNN 基本原理 离哪个类近,就属于该类 [例如:与下方新元素距离最近的三个点中,2个深色,所以新元素分类为深色] K的含义就是最近邻的个数.在sklearn中,KNN的K值是通过n ...
随机推荐
- JS仿淘宝左侧菜单
http://www.webdm.cn/webcode/1c724a06-06f4-4c4f-931a-c683285fa700.html
- lamp经典安装
一.网络方面的知识 2 ①-网络常见的命令 2 ②-网卡相关 2 ③-防火墙相关 2 ④-selinux相关 3 二.上传amp源代码包 5 三.linux下软件安装-vsftpd安装 6 ①-rpm ...
- POJ 2104 && POJ 2761 (静态区间第k大,主席树)
查询区间第K大,而且没有修改. 使用划分树是可以做的. 作为主席树的入门题,感觉太神奇了,Orz /* *********************************************** ...
- The YubiKey -- COMPARISON OF VERSIONS
COMPARISON OF YUBIKEY VERSIONS BASICSTANDARD & NANO BASICEDGE & EDGE-N PREMIUMNEO & NE ...
- apache如何支持asp.net
Apache是目前广泛使用的一种网络服务器程序,不仅在UNIX/LINUX平台上被大量使用,而且在Windows平台上也有许多站点放弃了IIS而转向Apache..NET是微软推出的功能强大的开发技术 ...
- MyBatis接口的简单实现原理
MyBatis接口的简单实现原理 用过MyBatis3的人可能会觉得为什么MyBatis的Mapper接口没有实现类,但是可以直接用? 那是因为MyBatis使用Java动态代理实现的接口. 这里仅仅 ...
- Detecting Underlying Linux Distro
If you are the owner of the system, then you know which Linux is installed and running. This article ...
- axure8.1可用授权码
Licensee: University of Science and Technology of China (CLASSROOM)Key: DTXRAnPn1P65Rt0xB4eTQ+4bF5IU ...
- MVC使用Entity Framework Code First,用漂亮表格显示1对多关系
部门和职员是1对多关系.用一个表格列出所有部门,并且在每行显示该部门下的所有职员名称.如下: 部门和职员的Model: using System.Collections.Generic; namesp ...
- MVC扩展ActionInvoker,自定义ActionInvoker,根据请求数据返回不同视图
ActionInvoker的作用是:根据请求数据(HttpPost,HttpGet等)和action名称,来激发响应的action,再由action渲染视图.本文通过自定义ActionInvoker, ...