【CodeChef】Prime Distance On Tree
给定一棵边长都是\(1\)的树,求有多少条路径长度为质数
树上路径自然是点分治去搞,但是发现要求是长度为质数,总不能对每一个质数都判断一遍吧
自然是不行的,这个东西显然是一个卷积,我们合并的时候显然可以直接大力\(NTT\)
但是需要注意的是我们访问子树的顺序必须是先访问深度小的子树,否则轻松被菊花加长链卡掉
但是\(CodeChef\)数据水啊,就这样直接搞过去了
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<set>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=1e5+5;
const int inf=1e9;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct E{int v,nxt;}e[maxn];
const LL mod=998244353;
const LL G[2]={3,332748118};
int sum[maxn],mx[maxn],vis[maxn],st[maxn];
int now,S,rt,top,n,num,head[maxn],tax[maxn];
int f[maxn],p[maxn>>1];
int rev[262145],len,L;
LL A[262145],B[262145],ans;
inline void add(int x,int y) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;}
inline LL ksm(LL a,int b) {
LL S=1;
while(b) {if(b&1) S=S*a%mod;b>>=1;a=a*a%mod;}
return S;
}
inline void NTT(LL *f,int o) {
for(re int i=0;i<len;i++)
if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int i=2;i<=len;i<<=1) {
int ln=i>>1;LL og1=ksm(G[o],(mod-1)/i);
for(re int l=0;l<len;l+=i) {
LL t,og=1;
for(re int x=l;x<l+ln;++x) {
t=(og*f[ln+x])%mod;
f[ln+x]=(f[x]-t+mod)%mod;
f[x]=(f[x]+t)%mod;
og=(og*og1)%mod;
}
}
}
if(!o) return;
LL inv=ksm(len,mod-2);
for(re int i=0;i<len;i++) f[i]=(f[i]*inv)%mod;
}
inline void mul() {
int m=0;
for(re int i=1;i<=top;i++) m=max(m,st[i]);
if(!L) {L=m;return;}
for(re int i=1;i<=top;i++) B[st[i]]++;
len=1;while(len<m+L+2) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
for(re int i=1;i<=L;i++) A[i]=tax[i];
NTT(A,0),NTT(B,0);
for(re int i=0;i<len;i++) A[i]=(A[i]*B[i])%mod;
NTT(A,1);
for(re int i=1;i<=p[0]&&p[i]<=L+m;i++) ans+=A[p[i]];
L=max(L,m);
for(re int i=0;i<len;i++) A[i]=B[i]=0;
}
void getroot(int x,int fa) {
sum[x]=1;mx[x]=0;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
getroot(e[i].v,x);
sum[x]+=sum[e[i].v];
mx[x]=max(mx[x],sum[e[i].v]);
}
mx[x]=max(mx[x],S-sum[x]);
if(mx[x]<now) now=mx[x],rt=x;
}
void getdis(int x,int fa,int L) {
st[++top]=L;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]||e[i].v==fa) continue;
getdis(e[i].v,x,L+1);
}
}
void dfs(int x) {
vis[x]=1;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]) continue;
top=0;getdis(e[i].v,x,1);
for(re int j=1;j<=top;j++)
if(!f[st[j]]) ans++;
mul();
for(re int j=1;j<=top;j++) tax[st[j]]++;
}
for(re int i=1;i<=L;i++) tax[i]=0;
L=0;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]) continue;
S=sum[e[i].v];now=inf;
getroot(e[i].v,x);dfs(rt);
}
}
int main() {
n=read();
for(re int x,y,i=1;i<n;i++)
x=read(),y=read(),add(x,y),add(y,x);
f[1]=1;
for(re int i=2;i<=n;i++) {
if(!f[i]) p[++p[0]]=i;
for(re int j=1;j<=p[0]&&p[j]*i<=n;j++) {
f[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
S=n,now=inf;getroot(1,0);dfs(rt);
LL C=(LL)n*(LL)(n-1)/2ll;
printf("%.6lf\n",(double)ans/(double)C);
return 0;
}
【CodeChef】Prime Distance On Tree的更多相关文章
- CodeChef - PRIMEDST Prime Distance On Tree 树分治 + FFT
Prime Distance On Tree Problem description. You are given a tree. If we select 2 distinct nodes unif ...
- 【UVA10140】Prime Distance
题目大意:求出一个给定区间 [l, r] 内相邻素数之间的最大距离和最小距离. 题解:由于 l, r 的范围太大,没法直接用筛法得出区间的素数.考虑筛出区间的素数等价于筛掉区间内的所有和数, 根据算术 ...
- 一本通1619【例 1】Prime Distance
1619: [例 1]Prime Distance 题目描述 原题来自:Waterloo local,题面详见 POJ 2689 给定两个整数 L,R,求闭区间 [L,R] 中相邻两个质数差值最小的数 ...
- 【LeetCode】二叉查找树 binary search tree(共14题)
链接:https://leetcode.com/tag/binary-search-tree/ [220]Contains Duplicate III (2019年4月20日) (好题) Given ...
- 【BZOJ2959】长跑(Link-Cut Tree,并查集)
[BZOJ2959]长跑(Link-Cut Tree,并查集) 题面 BZOJ 题解 如果保证不出现环的话 妥妥的\(LCT\)傻逼题 现在可能会出现环 环有什么影响? 那就可以沿着环把所有点全部走一 ...
- 【BZOJ2588】Count On a Tree(主席树)
[BZOJ2588]Count On a Tree(主席树) 题面 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第 ...
- 【BZOJ2816】【ZJOI2012】网络(Link-Cut Tree)
[BZOJ2816][ZJOI2012]网络(Link-Cut Tree) 题面 题目描述 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相 ...
- 【CodeChef】Querying on a Grid(分治,最短路)
[CodeChef]Querying on a Grid(分治,最短路) 题面 Vjudge CodeChef 题解 考虑分治处理这个问题,每次取一个\(mid\),对于\(mid\)上的三个点构建最 ...
- 【CF434E】Furukawa Nagisa's Tree 点分治
[CF434E]Furukawa Nagisa's Tree 题意:一棵n个点的树,点有点权.定义$G(a,b)$表示:我们将树上从a走到b经过的点都拿出来,设这些点的点权分别为$z_0,z_1... ...
随机推荐
- log4j2使用教程
Log4j2简介 log4j2是log4j 1.x 的升级版,2015年5月,Apache宣布log4j1.x 停止更新.最新版为1.2.17. log4j2参考了logback的一些优秀的设计, ...
- 手动实现一个简单的ArrayList
import org.omg.CORBA.PUBLIC_MEMBER; import java.io.Serializable; import java.util.*; import java.uti ...
- 高并发第九弹:逃不掉的Map --> HashMap,TreeMap,ConcurrentHashMap
平时大家都会经常使用到 Map,面试的时候又经常会遇到问Map的,其中主要就是 ConcurrentHashMap,在说ConcurrentHashMap.我们还是先看一下, 其他两个基础的 Map ...
- importnew:Map大家族的那点事儿
Map大家族的那点事儿(1) :Map Map大家族的那点事儿(2) :AbstractMap Map大家族的那点事儿(3) :TreeMap Map大家族的那点事儿(4) :HashMap Map ...
- Python 2 和 Python 3 有哪些主要区别
概述# 原稿地址:使用 2to3 将代码移植到 Python 3 几乎所有的Python 2程序都需要一些修改才能正常地运行在Python 3的环境下.为了简化这个转换过程,Python 3自带了一个 ...
- ACK-Ackermann, 阿克曼函数
以前好几次在学语言的使用都有实现这个ack函数的经历,今天读本算法书,偶尔又提到了这个,查了下wiki来头好大 Values of A(m, n) m\n 0 1 2 3 4 n 0 1 2 3 4 ...
- 在AE二次开发中出“正试图在 OS 加载程序锁内执行托管代码。不要尝试在 DllMain 或映像初始化函数内运行托管代码,这样做会导致应用程序挂起。”异常解决方案
今天的一个项目总用到了AE的开发组件,也就是ESRI公司提供的一系列的开发包(组件)都是以dll(动态链接库的形式)然后今天在调试的时候却出现了“正试图在 OS 加载程序锁内执行托管代码.不要尝试在 ...
- sqlserver年月日转汉字大写
也是今天sql群里有人问,看起来这个问题挺简单,但是我不知道具体该怎么实现.百度了一把,找到一个高手贡献的答案,记一下. 参考链接 sql中转换中文日期 ------ 配合相关函数 ------ cr ...
- Spark2.x详解
一.概述 Apache Spark 是一个快速的, 多用途的集群计算系统. 它提供了 Java, Scala, Python 和 R 的高级 API,以及一个支持通用的执行图计算的优化过的引擎. 它还 ...
- eventbus3-intellij-plugin插件搜不到
一.eventbus3-intellij-plugin插件搜不到