本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/theo.html

Computer VisiAlgorithms in Image Algebra,second edition

该算法最初是做前景轮廓跟踪的。

假设使用下面的8邻域,且前景像素值为1,背景像素值为0。

下面是该算法的描述:

1. 求出前景像素的轮廓,并用2表示,如果轮廓点是孤立点,端点或者其它不可删除的点,标记其为3。

2. 在第1步求出的轮廓中判断那些是可以删除的,那些是不可删除的,不可删除的点标记为4。

3. 再次扫描值为2的轮廓点,标记可以删除的点为5。

4. 对值为2和5的点执行删除操作。

重复上述步骤,直到图像中没有可以删除的像素为止。结果如想就是我们要的骨架结构。

      第一步是求轮廓的过程,对于一个值为1的像素点。如果它的p0,p2,p4,p6四个点都为1,则该点是内部点,继续循环,判断其它像素。

 如果该像素是孤立点或端点,则其像素值标记为3。

     如果像素是其它可能改变8连通性的点。比如以下的情况: p3, p7为0,但p4,p5,p6和p0,p1,p2中有非零值,如果删除p点,则连通性会改变。此时都标记当前像素值为3。

第一步后,我们会得到轮廓

第2步对不等于0的像素进行处理

如果像素周围全是2,则标记其为4(不删除)。

还有对于其它不可删除情况,比如下面这种情况,置当前像素为4。

第三步对于值为2的轮廓点再次进行判断,对于可删除的点,标记为5。

第四步删除值为2和5的点。

最终值为4的点为细化后的轮廓点。

算法实现的代码:

void gThin::cvPavlidis(cv::Mat& src, cv::Mat& dst)
{ if(src.type()!=CV_8UC1)
{
printf("只能处理二值或灰度图像\n");
return;
}
//非原地操作时候,copy src到dst
if(dst.data!=src.data)
{
src.copyTo(dst);
} char erase, n[8];
unsigned char bdr1,bdr2,bdr4,bdr5;
short k,b;
unsigned long i,j; int width, height;
width=dst.cols;
height= dst.rows; //把不能于0的值转化为1,便于后面处理
for(i=0; i< height; i++)
{
for(j=0; j<width; j++)
{
if(dst.at<uchar>(i,j)!=0)
{
dst.at<uchar>(i,j) = 1;
}
//图像边框像素值为0
if(i==0||i==(height-1)||j==0||j==(width-1))
dst.at<uchar>(i,j) = 0;
}
} erase =1;
width = width - 1;
height = height - 1;
uchar* img;
int step = dst.step;
while(erase)
{ img = dst.data;
//第一个循环,取得前景轮廓,轮廓用2表示
for(i=1; i< height; i++)
{
img += step;
for(j=1; j < width; j++)
{
uchar* p= img+j; if(p[0]!= 1)
continue; n[0]=p[1];
n[1]=p[-step+1];
n[2]=p[-step];
n[3]=p[-step-1];
n[4]=p[-1];
n[5]=p[step-1];
n[6]=p[step];
n[7]=p[step+1]; //bdr1是2进制表示的p0...p6p7排列,10000011,p0=1,p6=p7=1
bdr1 =0;
for(k=0; k<8; k++)
{
if(n[k]>=1)
bdr1|=0x80>>k;
}
//内部点,p0, p2, p4, p6都是为1, 非边界点,所以继续循环
//0xaa 10101010
// 0 1 0
// 1 1
// 0 1 0 if((bdr1&0xaa)== 0xaa)
continue;
//不是内部点,则是边界点,对于边界点,我们标记为2,是轮廓
p[0] = 2; b=0; for(k=0; k<=7; k++)
{
b+=bdr1&(0x80>>k);
}
//在边界点中,等于1,则是端点,等于0,则是孤立点,此时标记3
if(b<=1 )
p[0] = 3; //此条件说明p点是中间点,如果移去会引起断裂
// 0x70 0x7 0x88 0xc1 0x1c 0x22 0x82 0x1 0xa0 0x40 0x28 0x10 0xa 0x4
// 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0
// 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
// 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
if((bdr1&0x70)!=0&&(bdr1&0x7)!=0&&(bdr1&0x88)==0)
p[0] = 3;
else if((bdr1&&0xc1)!=0&&(bdr1&0x1c)!=0&&(bdr1&0x22)==0)
p[0] = 3;
else if((bdr1&0x82)==0 && (bdr1&0x1)!=0)
p[0] = 3;
else if((bdr1&0xa0)==0 && (bdr1&0x40)!=0)
p[0] = 3;
else if((bdr1&0x28)==0 && (bdr1&0x10)!=0)
p[0] = 3;
else if((bdr1&0xa)==0 && (bdr1&0x4)!=0)
p[0] = 3; }
}
//printf("------------------------------\n");
//PrintMat(dst);
img = dst.data;
for(i=1; i<height; i++)
{
img += step;
for(j=1; j<width; j++)
{
uchar* p= img+j; if(p[0]== 0)
continue; n[0]=p[1];
n[1]=p[-step+1];
n[2]=p[-step];
n[3]=p[-step-1];
n[4]=p[-1];
n[5]=p[step-1];
n[6]=p[step];
n[7]=p[step+1]; bdr1 = bdr2 =0; //bdr1是2进制表示的当前点p的8邻域连通情况,hdr2是当前点周围轮廓点的连接情况
for(k=0; k<=7; k++)
{
if(n[k]>=1)
bdr1|=0x80>>k;
if(n[k]>=2)
bdr2|=0x80>>k;
} //相等,就是周围全是值为2的像素,继续
if(bdr1==bdr2)
{
p[0] = 4;
continue;
} //p0不为2,继续
if(p[0]!=2) continue;
//=4都是不可删除的轮廓点
// 0x80 0xa 0x40 0x1 0x30 0x6
// 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1
// 0 0 0 0 0 0 0 1 1 0 0 0
// 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 if(
(bdr2&0x80)!=0 && (bdr1&0xa)==0 &&
// ((bdr1&0x40)!=0 &&(bdr1&0x1)!=0 || ((bdr1&0x40)!=0 ||(bdr1 & 0x1)!=0) &&(bdr1&0x30)!=0 &&(bdr1&0x6)!=0 )
( ((bdr1&0x40)!=0 ||(bdr1 & 0x1)!=0) &&(bdr1&0x30)!=0 &&(bdr1&0x6)!=0 )
)
{
p[0]= 4;
}
//
else if((bdr2&0x20)!=0 && (bdr1&0x2)==0 &&
//((bdr1&0x10)!=0 && (bdr1&0x40)!=0 || ((bdr1&0x10)!=0 || (bdr1&0x40)!=0) && (bdr1&0xc)!=0 && (bdr1&0x81)!=0)
( ((bdr1&0x10)!=0 || (bdr1&0x40)!=0) && (bdr1&0xc)!=0 && (bdr1&0x81)!=0)
)
{
p[0]= 4;
} else if((bdr2&0x8)!=0 && (bdr1&0x80)==0 &&
//((bdr1&0x4)!=0 && (bdr1&0x10)!=0 || ((bdr1&0x4)!=0 || (bdr1&0x10)!=0) &&(bdr1&0x3)!=0 && (bdr1&0x60)!=0)
( ((bdr1&0x4)!=0 || (bdr1&0x10)!=0) &&(bdr1&0x3)!=0 && (bdr1&0x60)!=0)
)
{
p[0]= 4;
} else if((bdr2&0x2)!=0 && (bdr1&0x20)==0 &&
//((bdr1&0x1)!=0 && (bdr1&0x4)!=0 ||((bdr1&0x1)!=0 || (bdr1&0x4)!=0) &&(bdr1&0xc0)!=0 && (bdr1&0x18)!=0)
(((bdr1&0x1)!=0 || (bdr1&0x4)!=0) &&(bdr1&0xc0)!=0 && (bdr1&0x18)!=0)
)
{
p[0]= 4;
}
}
}
//printf("------------------------------\n");
//PrintMat(dst);
img = dst.data;
for(i=1; i<height; i++)
{
img += step;
for(j=1; j<width; j++)
{
uchar* p= img+j; if(p[0]!= 2)
continue; n[0]=p[1];
n[1]=p[-step+1];
n[2]=p[-step];
n[3]=p[-step-1];
n[4]=p[-1];
n[5]=p[step-1];
n[6]=p[step];
n[7]=p[step+1]; bdr4 = bdr5 =0;
for(k=0; k<=7; k++)
{
if(n[k]>=4)
bdr4|=0x80>>k;
if(n[k]>=5)
bdr5|=0x80>>k;
}
//值为4和5的像素
if((bdr4&0x8) == 0)
{
p[0]=5;
continue;
}
if((bdr4&0x20) == 0 && bdr5 ==0)
{
p[0]=5;
continue;
} }
}
erase = 0;
//printf("------------------------------\n");
//PrintMat(dst);
img = dst.data;
for(i=1; i<height; i++)
{
img += step;
for(j=1; j<width; j++)
{
uchar* p= img+j;
if(p[0]==2||p[0]==5)
{
erase = 1;
p[0] = 0;
}
}
}
//printf("------------------------------\n");
//PrintMat(dst);
//printf("------------------------\n");
} }

 

程序源代码:参加工程FirstOpenCV11

OpenCV学习(17) 细化算法(5)的更多相关文章

  1. OpenCV学习(16) 细化算法(4)

    本章我们学习Rosenfeld细化算法,参考资料:http://yunpan.cn/QGRjHbkLBzCrn 在开始学习算法之前,我们先看下连通分量,以及4连通性,8连通性的概念: http://w ...

  2. OpenCV学习(18) 细化算法(6)

    本章我们在学习一下基于索引表的细化算法. 假设要处理的图像为二值图,前景值为1,背景值为0. 索引表细化算法使用下面的8邻域表示法: 一个像素的8邻域,我们可以用8位二进制表示,比如下面的8邻域,表示 ...

  3. OpenCV学习(15) 细化算法(3)

          本章我们学习一下Hilditch算法的基本原理,从网上找资料的时候,竟然发现两个有很大差别的算法描述,而且都叫Hilditch算法.不知道那一个才是正宗的,两个算法实现的效果接近,第一种算 ...

  4. OpenCV学习(14) 细化算法(2)

          前面一篇教程中,我们实现了Zhang的快速并行细化算法,从算法原理上,我们可以知道,算法是基于像素8邻域的形状来决定是否删除当前像素.还有很多与此算法相似的细化算法,只是判断的条件不一样. ...

  5. OpenCV学习(13) 细化算法(1)

    程序编码参考经典的细化或者骨架算法文章: T. Y. Zhang and C. Y. Suen, "A fast parallel algorithm for thinning digita ...

  6. OpenCV学习(19) 细化算法(7)

    最后再来看一种通过形态学腐蚀和开操作得到骨架的方法.http://felix.abecassis.me/2011/09/opencv-morphological-skeleton/ 代码非常简单: v ...

  7. c++opencv中线条细化算法

    要达到的效果就是将线条尽量细化成单像素,按照论文上的Hilditch算法试了一下,发现效果不好,于是自己尝试着写了一下细化的算法,基本原理就是从上下左右四个方向向内收缩. 1.先是根据图片中的原则确定 ...

  8. OpenCV学习(9) 分水岭算法(3)

    本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark ...

  9. OpenCV学习(21) Grabcut算法详解

    grab cut算法是graph cut算法的改进.在理解grab cut算之前,应该学习一下graph cut算法的概念及实现方式. 我搜集了一些graph cut资料:http://yunpan. ...

随机推荐

  1. ubuntu 安装 eslint

    1. 安装 npm install -g eslint 安装结束后记住 /usr/local/bin/eslint -> /usr/local/lib/node_modules/eslint/b ...

  2. Tensorflow学习:(二)搭建神经网络

    一.神经网络的实现过程 1.准备数据集,提取特征,作为输入喂给神经网络       2.搭建神经网络结构,从输入到输出       3.大量特征数据喂给 NN,迭代优化 NN 参数       4.使 ...

  3. redis集群错误解决:/usr/lib/ruby/gems/1.8/gems/redis-3.0.0/lib/redis/client.rb:79:in `call': ERR Slot 15495 is already busy (Redis::CommandError)

    错误信息: /usr/lib/ruby/gems/1.8/gems/redis-3.0.0/lib/redis/client.rb:79:in `call': ERR Slot 15495 is al ...

  4. OpenGL笔记<第一章> 构建 GLSL class

    恭喜,我们终于很扎实地完成了第一章——glsl 入门 不幸的是,it's not the basic of GLSL shader ,我们下一节开篇,basic of GLSL shader 在下一章 ...

  5. <泛> STL - vector 模拟实现

    今天为大家带来一个模拟STL-vector的模板实现代码. 首先看一下测试结果,之后再为大家呈现设计 测试效果 测试代码 #include<iostream> #include<ve ...

  6. Python匹配中文的正则表达式

    python 中的字符串: https://www.cnblogs.com/livingintruth/p/3282981.html # -*- coding: utf-8 -*- import re ...

  7. bzoj4668: 冷战 并查集按秩合并

    题目链接 bzoj4668: 冷战 题解 按秩合并并查集,每次增长都是小集合倍数的两倍以上,层数不超过logn 查询路径最大值 LCT同解 代码 #include<bits/stdc++.h&g ...

  8. NEUQ OJ 2004:追梦之人 (计数数位dp)

    2004: 追梦之人 描述 题目描述: 为了纪念追梦人,粉丝们创造了一种新的数——“追梦数”.追梦数要满足以下两个条件:1.数字中不能出现“7”2.不能被7整除.比如:777和4396就不是追梦数,而 ...

  9. bzoj 1492

    这道题真好... 首先,感觉像DP,但是如果按照原题意,有无数个状态,每个状态又有无数个转移. 然后思考,我们每次买一部分和卖一部分的原因是什么,如果没有那个比例(就是rate=1恒成立),那么很容易 ...

  10. A server is already running. Check /home/peter/stock/tmp/pids/server.pid. Exiting【Xshell 运行rails s 报错】