机器视觉之 ICP算法和RANSAC算法
临时研究了下机器视觉两个基本算法的算法原理 ,可能有理解错误的地方,希望发现了告诉我一下
主要是了解思想,就不写具体的计算公式之类的了
(一) ICP算法(Iterative Closest Point迭代最近点)
ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法,如下图1
如下图,假设PR(红色块)和RB(蓝色块)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠,建立模型的
(图1)
ICP是改进自对应点集配准算法的
对应点集配准算法是假设一个理想状况,将一个模型点云数据X(如上图的PB)利用四元数旋转,并平移得到点云P(类似于上图的PR)。而对应点集配准算法主要就是怎么计算出qR和qT的,知道这两个就可以匹配点云了。
但是对应点集配准算法的前提条件是计算中的点云数据PB和PR的元素一一对应,这个条件在现实里因误差等问题,不太可能实线,所以就有了ICP算法
ICP算法是从源点云上的(PB)每个点 先计算出目标点云(PR)的每个点的距离,使每个点和目标云的最近点匹配,(记得这种映射方式叫满射吧)
这样满足了对应点集配准算法的前提条件、每个点都有了对应的映射点,则可以按照对应点集配准算法计算,但因为这个是假设,所以需要重复迭代运行上述过程,直到均方差误差小于某个阀值。
也就是说 每次迭代,整个模型是靠近一点,每次都重新找最近点,然后再根据对应点集批准算法算一次,比较均方差误差,如果不满足就继续迭代
(二)RANSAC算法(RANdom SAmple Consensus随机抽样一致)
它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。该算法最早由Fischler和Bolles于1981年提出。
光看文字还是太抽象了,我们再用图描述
RANSAC的基本假设是:
(1)数据由“局内点”组成,例如:数据的分布可以用一些模型参数来解释;
(2)“局外点”是不能适应该模型的数据;
(3)除此之外的数据属于噪声。
而下图二里面、蓝色部分为局内点,而红色部分就是局外点,而这个算法要算出的就是蓝色部分那个模型的参数
(图二)
RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。
在上图二中 左半部分灰色的点为观测数据,一个可以解释或者适应于观测数据的参数化模型 我们可以在这个图定义为一条直线,如y=kx + b;
一些可信的参数指的就是指定的局内点范围。而k,和b就是我们需要用RANSAC算法求出来的
RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:
1.有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
2.用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
3.如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
4.然后,用所有假设的局内点去重新估计模型,因为它仅仅被初始的假设局内点估计过。
5.最后,通过估计局内点与模型的错误率来评估模型。
这个过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。
这个算法用图二的例子说明就是先随机找到内点,计算k1和b1,再用这个模型算其他内点是不是也满足y=k1x+b2,评估模型
再跟后面的两个随机的内点算出来的k2和b2比较模型评估值,不停迭代最后找到最优点
我再用图一的模型说明一下RANSAC算法
(图1)
RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。
机器视觉之 ICP算法和RANSAC算法的更多相关文章
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- mahout中kmeans算法和Canopy算法实现原理
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...
- 使用Apriori算法和FP-growth算法进行关联分析
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...
- 转载:最小生成树-Prim算法和Kruskal算法
本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...
- 0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论
一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i ...
- 用Spark学习FP Tree算法和PrefixSpan算法
在FP Tree算法原理总结和PrefixSpan算法原理总结中,我们对FP Tree和PrefixSpan这两种关联算法的原理做了总结,这里就从实践的角度介绍如何使用这两个算法.由于scikit-l ...
- 字符串查找算法总结(暴力匹配、KMP 算法、Boyer-Moore 算法和 Sunday 算法)
字符串匹配是字符串的一种基本操作:给定一个长度为 M 的文本和一个长度为 N 的模式串,在文本中找到一个和该模式相符的子字符串,并返回该字字符串在文本中的位置. KMP 算法,全称是 Knuth-Mo ...
- 最小生成树之Prim算法和Kruskal算法
最小生成树算法 一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决. Prim算法 ...
- java实现最小生成树的prim算法和kruskal算法
在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权 ...
随机推荐
- Collection模块
一.nametuple--factory function for creating tuple subclasses with named fields 创建类似于元祖的数据类型,除了能够用索引来访 ...
- [POI2015]Trzy wieże
[POI2015]Trzy wieże 题目大意: 给定一个长度为\(n(n\le10^6)\)的仅包含'B'.'C'.'S'三种字符的字符串,请找到最长的一段连续子串,使得在这一段内出现过的所有字符 ...
- [CC-SEINC]Sereja and Subsegment Increasings
[CC-SEINC]Sereja and Subsegment Increasings 题目大意: 有长度为\(n(n\le10^5)\)的序列\(A\)和\(B\). 在一次操作中,可以选择一个区间 ...
- Codeforces Round #276 div1 B. Maximum Value Hash 乱搞
#include <cstdio> #include <cmath> #include <cstring> #include <ctime> #incl ...
- StringUtils类中 isEmpty() 与 isBlank()的区别
org.apache.commons.lang.StringUtils类提供了String的常用操作,最为常用的判空有如下两种isEmpty(String str)和isBlank(String st ...
- Lucene_索引(域)的查询
package cn.tz.lucene; import java.io.File; import org.apache.lucene.analysis.Analyzer; import org.ap ...
- 各种SSD SMART 信息 转
intel SSD Toolbox SMART信息 解释:03 – Spin Up Time (磁头加载时间)The average time it takes the spindle to spin ...
- hdu2158
最短区间版大家来找碴 Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- IIS 未能从程序集“System.ServiceModel, Version=3.0.0.0, Culture=neutral,
在Windows Server 2008中的IIS服务器中部署WCF服务程序时,通过浏览器访问报出如下错误: 未能从程序集“System.ServiceModel, Version=3.0.0.0, ...
- 光速 React
光速 React Vixlet 团队优化性能的经验教训 在过去一年多,我们 Vixlet 的 web 团队已经着手于一个激动人心的项目:将我们的整个 web 应用迁移到 React + Redux 架 ...