我们在音频处理的时候经常会接触到PCM数据:它是模拟音频信号经模数转换(A/D变换)直接形成的二进制序列,该文件没有附加的文件头和文件结束标志。

声音本身是模拟信号,而计算机只能识别数字信号,要在计算机中处理声音,就需要将声音数字化,这个过程叫经模数转换(A/D变换)。最常见的方式是透过脉冲编码调制PCM(Pulse Code Modulation) 。

运作原理如下:首先我们考虑声音经过麦克风,转换成一连串电压变化的信号,如下图所示。这张图的横座标为秒,纵座标为电压大小。

    

要将这样的信号转为 PCM 时,需要将声音量化,我们一般从如下几个维度描述一段声音:

  • 声道数、
  • 采样位数
  • 采样频率
  • 时长

采样频率:即取样频率,指每秒钟取得声音样本的次数。采样频率越高,声音的质量也就越好,声音的还原也就越真实,但同时它占的资源比较多。由于人耳的分辨率很有限,太高的频率并不能分辨出来。在16位声卡中有22KHz、44KHz等几级,其中,22KHz相当于普通FM广播的音质,44KHz已相当于CD音质了,目前的常用采样频率都不超过48KHz。

采样位数:即采样值或取样值(就是将采样样本幅度量化)。它是用来衡量声音波动变化的一个参数,也可以说是声卡的分辨率。它的数值越大,分辨率也就越高,所发出声音的能力越强。

声道数:很好理解,有单声道和立体声之分,单声道的声音只能使用一个喇叭发声(有的也处理成两个喇叭输出同一个声道的声音),立体声的PCM 可以使两个喇叭都发声(一般左右声道有分工) ,更能感受到空间效果。

时长: 采样的时长

下面再用图解来看看采样位数和采样频率的概念。让我们来看看这几幅图。

  • 图中的黑色曲线表示的是PCM 文件录制的自然界的声波,
  • 红色曲线表示的是PCM 文件输出的声波,

这个图中,采样点是离散的,每一个点对应pcm一个单元的数据。

  • 采样频率越高,x轴采样点就越密集,声音越接近原始数据
  • 采样位数越高,y轴采样点就越密集,声音越接近原始数据

  

采样频率单位为Hz,表示每秒采样的次数,一般有11025HZ(11KHz),22050HZ(22KHz)、44100Hz(44KHz)三种。

采样位数单位为bit(位),一般有8bit和16bit 。8bit表示用8bit空间量化某时刻的声音,这一点基本是和图片用r、g、b三单位共24bit量化颜色一样。

PCM存储方式:

有了上述基础,就可以很容易理解PCM信息存储的方式。例如,一个单声道、8bit、11KHz的格式如下:

采样点

T1

T2

T3

T4

T5

T6

幅值

0x08

0x07

0x03

0x03

0x04

0x03

  • 采样位数为是8bit,用一个byte存储它每个时刻的信息
  • 声道为单声道,每个时刻只有一份信息。
  • 频率为11kHz,每秒钟有11025个时刻

再扩展一下

  • 对于多声道的声音,每个时刻的存储同时存了两份LR,LR,LR的方式
  • 对于16bit的声音,又分为little endian 和 big endian存储方式(和数字的存储方式一样分大小端)

知乎上有篇帖子讲述的还比较多: pcm 音频数据的存储方式?

综上所述,我们可以得到pcm文件的体积计算公式(这里我们把 采样位数/8 是因为电脑上是将bit转化为byte):

存储量 = (采样频率 × 采样位数/8 × 声道 × 时间.

例如,数字激光唱盘(CD-DA,红皮书标准)的标准采样频率为44.lkHz,采样数位为16位,立体声(2声道),可以几乎无失真地播出频率高达22kHz的声音,这也是人类所能听到的最高频率声音。激光唱盘一分钟音乐需要的存储量为:

(44.1*1000*l6*2)*60/8=10,584,000(字节)=10.584MBytes

这个数值就是PCM声音文件在硬盘中所占磁盘空间的存储量。

计算机音频文件的格式决定了其声音的品质,日常生活中电话、收音机等均为模拟音频信号,即不存在采样频率和采样位数的概念,我们可以这样比较一下:

  • 44KHz,16BIT的声音称作:CD音质;
  • 22KHz、16Bit的声音效果近似于立体声(FM Stereo)广播,称作:广播音质;
  • 11kHz、8Bit的声音,称作:电话音质。

WAV和PCM的关系

前面也介绍到了,PCM数据本身只是一个裸码流,它是由声道、采样位数、采样频率、时长共同决定的,因此我们至少要知道其中的三个才能将pcm所代表的数据提取出来。

因此,纯PCM数据是无法播放的,因此还需要一段描述数据。计算机系统中的一个比较常见的做法是将pcm码流和描述信息封装在一起,形成一个音频文件。这样就可以直接播放了。

一种常见的方式是使用wav格式定义的规范将pcm码流和描述信息封装起来。查看pcm和对应wav文件的hex文件,可以发现,wav文件只是在pcm文件的开头多了44bytes,来表征其声道数、采样频率和采样位数等信息。这个其实和bmp非常类似。

    

网上有文章详细的介绍了这种方式,并通过将pcm封装成wav文件实现html直接播放。

WEB端实现PCM裸流播放

需要注意的是,WAV定义的是一种音频封装规范,虽然常见的都是音频流被PCM编码处理的WAV,但这不表示WAV只能使用PCM编码,MP3编码同样也可以运用在WAV中

参考文章:

计算机音频基础-PCM简介的更多相关文章

  1. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  2. XML 参考:XML基础 XML 简介

    XML 参考:XML基础 -- XML简介和用途 转:http://www.cnblogs.com/Dlonghow/archive/2009/01/22/1379799.html XML 参考:XM ...

  3. Java基础类库简介

    Java基础类库简介 一.常用的基础类库:11个jar(Java Archive,Java归档)包 作为java语言使用者,我们可以感受到java语言带来的优势(平台无关.面向对象.多线程.高效易扩展 ...

  4. Notes 20180505 : 计算机的基础知识

    总是想要去深入了解一下计算机,可真正去了解的时候才发现那并非一日之功,关于计算机的学习,并未放弃,但是化知识为笔记尚需时日,今日我们先简单了解一下计算机,然后开始Java语言的学习. 1 计算机的基础 ...

  5. Python音频处理(一)音频基础知识-周振洋

    1.声音音频基础知识 (1)声音是由震动产生,表现为波的形式.波有频率,振幅等参数.对于声波而言:频率越大,音调越高,反之越低.振幅越大,声音越大,反之越小. (2)采样率,帧率:波是连续(无穷)的, ...

  6. SpringCloud(1) 架构演进和基础知识简介

    一.传统架构演进到分布式架构 简介:讲解单机应用和分布式应用架构演进基础知识 (画图) 高可用 LVS+keepalive 1.单体应用:开发速度慢.启动时间长.依赖庞大.等等 2.微服务:易开发.理 ...

  7. 我的新书《计算机图形学基础(OpenGL版)》

    我的新书<计算机图形学基础(OpenGL版)>今年6月份在清华大学出版社出版了!新书与原在机械工业出版社出的<计算机图形学>相比,主要有以下不同: 1.加重OpenGL的内容, ...

  8. 预学第二天:计算机的基础知识+python安装+pycharm安装+思维导图

    目录 计算机的基础知识 计算机是由什么组成的 什么是操作系统

  9. python介绍,计算机核心基础,与运行程序有关的三大核心硬件,操作系统

    python介绍,计算机核心基础,与运行程序有关的三大核心硬件,操作系统 引子 python是什么? 什么是编程语言?为何要有编程语言? 什么是编程?什么是程序?什么是进程?为何要编程? 计算机基础 ...

随机推荐

  1. GMM 模型需不需归一化问题

    工作中遇到的问题:在GMM模型中添加一维scale比较大的特征,需不需要归一化 答案:不需要,推导如下:

  2. 洛谷P2746校园网

    传送门啦 下面来看任务B.我们发现,图中只要存在入度为0的点和出度为0的点就永远不可能满足要求:" 不论我们给哪个学校发送新软件,它都会到达其余所有的学校 ".我们还发现,只要在入 ...

  3. qlserver排序规则在全角与半角处理中的应用

    --1.查询区分全角与半角字符--测试数据DECLARE @t TABLE(col varchar(10))INSERT @t SELECT 'aa'UNION ALL SELECT 'Aa'UNIO ...

  4. Linux学习笔记:wc查看文件字节数、字数、行数

    Linux系统中的wc(Word Count)命令可以统计指定文件中的字节数.字数.行数,并将统计结果显示输出. 若不指定文件名称,或是所给予的文件名为“-”,则wc指令会从标准输入设备读取数据. 语 ...

  5. 【剑指Offer面试题】 九度OJ1389:变态跳楼梯

    转自:http://www.myexception.cn/program/1973966.html 时间限制:1 秒内存限制:32 兆特殊判题:否提交:2331解决:1332 题目描述: 一只青蛙一次 ...

  6. Nt函数原型头文件

    //转自看雪,可以作为一个头文件使用,方便快捷 1 NTSTATUS NTAPI NtAcceptConnectPort( OUT PHANDLE PortHandle, IN PVOID PortI ...

  7. CF293B Distinct Paths题解

    CF293B Distinct Paths 题意 给定一个\(n\times m\)的矩形色板,有kk种不同的颜料,有些格子已经填上了某种颜色,现在需要将其他格子也填上颜色,使得从左上角到右下角的任意 ...

  8. CF 577A 分解因数

    输入一个n 构成一个n*n的表 这个表里的数 第i行j列的值为i*j 问x在这个表里出现了几次 Sample test(s)input10 5output2input6 12output4input5 ...

  9. CCF CSP 201703-2 学生排队

    博客中的文章均为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201703-2 学生排队 问题描述 体育老师小明要将自己班上的学生按顺序排队.他首先让学生按学号从小到大的顺序排成一排, ...

  10. Spark(十)Spark之数据倾斜调优

    一 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作 ...