***************************************转载请注明出处:http://blog.csdn.net/lttree***************************************

最大连续子序列

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 17941    Accepted Submission(s): 7941

Problem Description
给定K个整数的序列{ N1, N2, ..., NK },其随意连续子序列可表示为{ Ni, Ni+1, ..., 

Nj },当中 1 <= i <= j <= K。最大连续子序列是全部连续子序列中元素和最大的一个, 

比如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和 

为20。 

在今年的数据结构考卷中,要求编敲代码得到最大和,如今添加一个要求,即还须要输出该 

子序列的第一个和最后一个元素。
 
Input
測试输入包括若干測试用例,每一个測试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。
 
Output
对每一个測试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元 

素,中间用空格分隔。假设最大连续子序列不唯一,则输出序号i和j最小的那个(如输入例子的第2、3组)。若全部K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。 
 
Sample Input
6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0
 
Sample Output
20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0
Hint
Hint
Huge input, scanf is recommended.
 

继续做点DP题目,这次是最大连续子序列。
这样的的状态转移方程非常easy,就是  dp[i]=max(dp[i-1]+a[i],a[i])
由于要输出首尾位置,所以我又建立了一个数组来存,到达当前位置的 首部。

这道题,在全部数据都为负数情况下,要求总和为0,输出整个数组首尾位置,
这个实现,能够用一个bool变量,在输入数据时,一个个推断——62MS
也能够再建立一个数组,然后sort排序一下,推断最大数是否为负数——125MS,并且有额外10000大空间消耗

/****************************************
*****************************************
* Author:Tree *
*From :http://blog.csdn.net/lttree *
* Title : 最大连续子序列 *
*Source: hdu 1231 *
* Hint : dp *
*****************************************
****************************************/
#include <stdio.h>
int a[10001],sum[10001],pre[10001];
int main()
{
int n,i;
int Max,Max_i;
// isnegtive来推断是否全部数都小于0
bool isnegtive;
while( scanf("%d",&n)!=EOF && n)
{
isnegtive=false;
for(i=0;i<n;++i)
{
scanf("%d",&a[i]);
if( a[i]>=0 ) isnegtive=true;
} // 假设全部数都小于0,后面不用算,直接输出
if( !isnegtive )
{
printf("0 %d %d\n",a[0],a[n-1]);
continue;
} // 计算最大序列和
sum[0]=pre[0]=a[0];
for( i=1;i<n;++i )
{
if( sum[i-1]+a[i]>a[i] )
{
sum[i]=sum[i-1]+a[i];
pre[i]=pre[i-1];
}
else
sum[i]=pre[i]=a[i];
} // 寻找最大子序列和,存下下标
Max=-999999;
for( i=0;i<n;++i )
{
if( sum[i]>Max )
{
Max=sum[i];
Max_i=i;
}
} printf("%d %d %d\n",Max,pre[Max_i],a[Max_i]);
}
return 0;
}


ACM-DP之最大连续子序列——hdu1231的更多相关文章

  1. 动态规划(Dynamic Programming, DP)---- 最大连续子序列和

    动态规划(Dynamic Programming, DP)是一种用来解决一类最优化问题的算法思想,简单来使,动态规划是将一个复杂的问题分解成若干个子问题,或者说若干个阶段,下一个阶段通过上一个阶段的结 ...

  2. 【ACM】 1231 最大连续子序列

    [1231 最大连续子序列 ** Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...

  3. HDU-1231 简单dp,连续子序列最大和,水

    1.HDU-1231 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=1231 3.总结:水 题意:连续子序列最大和 #include<iostre ...

  4. DP专题训练之HDU 1231 最大连续子序列

    Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j < ...

  5. hdu1231 最长连续子序列和

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1231 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, N ...

  6. 最大连续子序列乘积(DP)

    题目来源:小米手机2013年校园招聘笔试题 题目描述: 给定一个浮点数序列(可能有正数.0和负数),求出一个最大的连续子序列乘积. 输入: 输入可能包含多个测试样例.每个测试样例的第一行仅包含正整数 ...

  7. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  8. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. ACM_HDU 1231 最大连续子序列 (dp)_代码分析

    Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i < ...

随机推荐

  1. Linux密码策略-密码长度-密码复杂度

    1.设置密码长度 vim /etc/pam.d/system-authpassword requisite pam_cracklib.so try_first_pass retry=3 minlen= ...

  2. contabs.js 的使用

    1. 先下载两个文件 https://files.cnblogs.com/files/xiaojf/style.css https://files.cnblogs.com/files/xiaojf/c ...

  3. git status中文文件名编码问题解决

    在默认设置下,中文文件名在工作区状态输出,中文名不能正确显示,而是显示为八进制的字符编码. 通过将git配置变量 core.quotepath 设置为false,就可以解决中文文件名称在这些Git命令 ...

  4. LeetCode 80. 删除排序数组中的重复项 II

    LeetCode 80. 删除排序数组中的重复项 II

  5. linux服务开机启动

    1.chkconfig 配置开机启动 在  /etc/init.d  创建执行服务的可执行脚本,赋予脚本可执行权限.如果是通过yum 或者rpm安装的,并且已经在该目录下存在对应的启动脚本,就不用自己 ...

  6. 高仿360界面的实现(用纯XML和脚本实现)

    源码下载:360UI 本项目XML的桌面渲染依赖GQT开源项目(请感兴趣的朋友加入QQ讨论群:101189702,在群共享文件里下载GQT源码),以下是360界面实现的全部XML代码,所有的代码都在3 ...

  7. linux 下rocketmq安装

    一.解压mq(/data下)tar -zxvf Rocketmq-3.5.8.tar.gz 二.修改配置文件vi /etc/profileexport rocketmq=/data/alibaba-r ...

  8. 【知了堂学习笔记】java 编写几种常见排序算法2

    排序的分类: 1.直接选择排序 它的基本思想是:第一次从R[0]~R[n-1]中选取最小值,与R[0]交换,第二次从R[1]~R[n-1]中选取最小值,与R[1]交换,....,第i次从R[i-1]~ ...

  9. JIT即时编译器

    一.什么是JIT? 即时编译器,负责将IL转换成本机CPU指令 二.JIT编译原理 ①在Main方法执行之前,CLR会检测出Main的代码引用的所有类型.会导致CLR分配一个内部结构.在这个结构中,C ...

  10. Linux设备驱动模型(sysfs)

    <总线模型概述> 随着技术的发展,系统的拓扑结构也越来越复杂,对热插拔.跨平台移植性的要求越来越高,从Linux2.6内核开始提供全新的设备模型.将所有的驱动挂载到计算机的总线上(比如US ...