【BZOJ4916】神犇和蒟蒻

Description

很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yww和zjt;

很久很久之后,有一只蒟蒻叫ypl,被神犇myh的做题记录碾在地上;

Input

​ 请你读入一个整\(N\);

Output

​ 请你输出一个整数\(A=\sum_{i=1}^n\mu(i^2);(\bmod1000000007)\)

​ 请你输出一个整数\(B=\sum_{i=1}^n\varphi(i^2);(\bmod 1000000007)\)

HINT

\(1≤N≤10^9\)


杜教筛板子,复习了一下...

显然\(A=1\)

然后\(\varphi(i^2)=i\varphi(i)\),因为不改变质因子的种类,所以可以直接乘出来。

设\(\mathtt f=i\varphi(i)\),那么

\[\mathtt {Id^2}=\mathtt f * \mathtt{Id}
\]

于是直接杜教筛就行了


Code:

#include <cstdio>
#include <unordered_map>
#define ll long long
std::unordered_map <int,ll> F;
const int N=1e6;
const ll mod=1e9+7;
int pri[N+10],ispri[N+10],cnt;
ll f[N+10];
void init()
{
f[1]=1;
for(int i=2;i<=N;i++)
{
if(!ispri[i])
{
pri[++cnt]=i;
f[i]=i-1;
}
for(int j=1;j<=cnt&&pri[j]*i<=N;j++)
{
ispri[i*pri[j]]=1;
if(i%pri[j]==0)
{
f[i*pri[j]]=f[i]*pri[j];
break;
}
f[i*pri[j]]=f[i]*(pri[j]-1);
}
}
for(int i=1;i<=N;i++) f[i]=(f[i]*i+f[i-1])%mod;
}
#define g(a) (1ll*(a)*(a+1)/2)
const ll inv=166666668;
ll Sum(int n)
{
if(n<=N) return f[n];
if(F.find(n)!=F.end()) return F[n];
ll ret=1ll*n*(n<<1|1)%mod*(n+1)%mod*inv%mod;
for(int l=2,r;l<=n;l=r+1)
{
r=n/(n/l);
(ret-=(g(r)-g(l-1))*Sum(n/l))%=mod;
}
return F[n]=((ret+mod)%mod);
}
int main()
{
init();
int n;scanf("%d",&n);
printf("1\n%lld",Sum(n));
return 0;
}

2018.12.16

【BZOJ4916】神犇和蒟蒻 解题报告的更多相关文章

  1. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  2. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  3. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  4. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  5. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

  6. BZOJ4916: 神犇和蒟蒻(杜教筛)

    题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...

  7. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. 【BZOJ4916】神犇与蒟蒻

    题面 Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;\(1<=N<=10^9\),A.B模\(10^9+7 ...

随机推荐

  1. Python输出格式全总结

    输入输出 有几种方法可以显示程序的输出:数据可以以人类可读的形式打印出来,或者写入文件以供将来使用.本章将讨论一些可能性. 更漂亮的输出格式 到目前为止,我们遇到了两种写入值的方法:表达式语句 和 p ...

  2. 浅谈C与Java

    Java的方法调用过程 Java变量:基本类型变量.指针变量 push 压入新的栈桢 在栈桢内部创建局部基本类型变量,接收参数值 在栈桢内部创建局部指针变量,接收参数值后,该指针变量指向堆上实例 po ...

  3. FFMS2 官方说明译文 [原创]

    原文:https://github.com/FFMS/ffms2 译文:http://www.cnblogs.com/popapa/p/ffms2.html 采集日期:2018-3-18 FFmpeg ...

  4. GitHub笔记(三)——分支管理和多人协作

    三.分支管理 0 语句: 查看分支:git branch 创建分支:git branch <name> 切换分支:git checkout <name> 创建+切换分支:git ...

  5. Spring入门学习笔记(3)——事件处理类

    目录 Spring中的事件处理 Spring内建事件 监听Context事件 Example 自定义Spring事件 Spring中的事件处理 ApplicationContext 是Spring的核 ...

  6. Less 的用法

    1. node.js node.js是一个前端的框架 自带一个包管理工具npm node.js 的安装 官网:http://nodejs.cn/ 在命令行检验是否安装成功 切换到项目目录,初始化了一个 ...

  7. SDWebImage 错误汇总

    1.  [UIImageView sd_setImageWithURL:placeholderImage:]: unrecognized selector sent to instance 打包静态库 ...

  8. lambda----jdk8重头戏

    简介(译者注:虽然看着很先进,其实Lambda表达式的本质只是一个"语法糖",由编译器推断并帮你转换包装为常规的代码,因此你可以使用更少的代码来实现同样的功能.本人建议不要乱用,因 ...

  9. DataRow对象的RowState和DataRowVersion属性特点

    DataRow对象有两个比较重要的属性,分别是行状态(RowState)和行版本(DataRowVersion),通过这两个属性能够有效的管理表中的行.下面简要的介绍一下行状态和行版本的特点和关系. ...

  10. centos下配置gitosis服务器

    背景: 一台windows电脑,Xshell可以登录centos服务器(centos7.2 64位,有root用户权限),windows电脑已经安装好git和tortoies 在windows下下载和 ...