Input

第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数。你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 
第二,如果不是质数,输出它最大的质因子是哪个。

Output

第一行CAS(CAS<=350,代表测试数据的组数) 
以下CAS行:每行一个数字,保证是在64位长整形范围内的正数。 
对于每组测试数据:输出Prime,代表它是质数,或者输出它最大的质因子,代表它是和数

Sample Input

6
2
13
134
8897
1234567654321
1000000000000

Sample Output

Prime
Prime
67
41
4649
5

HINT

数据范围:

保证cas<=350,保证所有数字均在64位长整形范围内。

Solution

裸Pollard Rho题

但它不简单,反而很恶心

不知道为什么数据那么强

几个注意的:

1)乘法要写快速乘,原理是a%b=a-a/b*b

2)Miller Rabin最好优化

3)有些版本的Pollard Rho是错的。。。被坑了好久(数学一本通)

这东西本身有概率错误,导致调都不知道调哪里,最后是照着zhou888的代码一点一点边改边交边调的

#include<bits/stdc++.h>
#define ll unsigned long long
const int Count=;
int base[]={,,,,,};
ll ans;
template<typename T> inline void read(T &x)
{
T data=,w=;
char ch=;
while(ch!='-'&&(ch<''||ch>''))ch=getchar();
if(ch=='-')w=-,ch=getchar();
while(ch>=''&&ch<='')data=((T)data<<)+((T)data<<)+(ch^''),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<)putchar('-'),x=-x;
if(x>)write(x/);
putchar(x%+'');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
inline ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
inline ll qmul(ll a,ll b,ll n)
{
return (a*b-(ll)(((long double)a*b+0.5)/n)*n+n)%n;
}
inline ll qexp(ll a,ll b,ll n)
{
ll res=;
while(b)
{
if(b&)res=qmul(res,a,n);
a=qmul(a,a,n);
b>>=;
}
return res;
}
inline bool Miller_Rabin(ll N)
{
if(N==||(N>&&N%!=&&N%!=))return false;
for(register int i=;i<=;++i)
if(N==base[i])return true;
else if(N%base[i]==)return false;
ll p=N-,A,pre,k=;
while(!(p&))p>>=,++k;
for(register int i=;i<=Count;++i)
{
A=rand()%(N-)+;
A=qexp(A,p,N);
pre=A;
for(register int j=;j<=k;++j)
{
A=qmul(A,A,N);
if(A==&&pre!=&&pre!=N-)return false;
pre=A;
}
if(A!=)return false;
}
return true;
}
inline ll abs(ll x,ll y)
{
return y>x?y-x:x-y;
}
inline int Pollard_Rho(ll N,ll C)
{
ll k=,x=rand()%N,y=x,d=;
for(register ll i=;d==;++i)
{
x=(qmul(x,x,N)+C)%N;
d=gcd(abs(x,y),N);
if(i==k)k<<=1ll,y=x;
}
return d;
}
inline void solve(ll N)
{
if(N==)return ;
if(Miller_Rabin(N))
{
chkmax(ans,N);
return ;
}
ll p,c=;
while((p=Pollard_Rho(N,c))==N&&c<=N)c++;
solve(p);solve(N/p);
}
int main()
{
srand();
int T;
read(T);
while(T--)
{
ll N;
read(N);
ans=;
solve(N);
if(ans==N)puts("Prime");
else write(ans,'\n');
}
return ;
}

3667 Rabin-Miller算法

【刷题】BZOJ 3667 Rabin-Miller算法的更多相关文章

  1. 牛客网Java刷题知识点之垃圾回收算法过程、哪些内存需要回收、被标记需要清除对象的自我救赎、对象将根据存活的时间被分为:年轻代、年老代(Old Generation)、永久代、垃圾回收器的分类

    不多说,直接上干货! 首先,大家要搞清楚,java里的内存是怎么分配的.详细见 牛客网Java刷题知识点之内存的划分(寄存器.本地方法区.方法区.栈内存和堆内存) 哪些内存需要回收 其实,一般是对堆内 ...

  2. LeetCode刷题--基础知识篇--KMP算法

    KMP算法 关于字符串匹配的算法,最知名的莫过于KMP算法了,尽管我们日常搬砖几乎不可能去亲手实现一个KMP算法,但作为一种算法学习的锻炼也是很好的,所以记录一下. KMP算法是根据三位作者(D.E. ...

  3. 面试刷题25:jvm的垃圾收集算法?

    垃圾收集是java语言的亮点,大大提高了开发人员的效率. 垃圾收集即GC,当内存不足的时候触发,不同的jvm版本算法和机制都有差别. 我是李福春,我在准备面试,今天的问题是: jvm的垃圾回收算法有哪 ...

  4. PAT-甲级刷题笔记和总结

     本帖主要记录一些自己在刷题过程中的一些笔记,包括: 1.常用的函数 2.STL中常用方法 3.常见错误 4.其他常用方法 5.刷题过程中的常见算法:https://www.cnblogs.com/M ...

  5. leetcode top-100-liked-questions刷题总结

    一.起因 宅在家中,不知该做点什么.没有很好的想法,自己一直想提升技能,语言基础自不必言,数据结构还算熟悉,算法能力一般.于是乎,就去刷一通题. 刷题平台有很多,我选择了在leetcode进行刷题.回 ...

  6. BZOJ第一页刷题计划

    BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...

  7. $2019$ 暑期刷题记录1:(算法竞赛DP练习)

    $ 2019 $ 暑期刷题记录: $ POJ~1952~~BUY~LOW, BUY~LOWER: $ (复杂度优化) 题目大意:统计可重序列中最长上升子序列的方案数. 题目很直接的说明了所求为 $ L ...

  8. NOI题库分治算法刷题记录

    今天晚自习机房刷题,有一道题最终WA掉两组,极其不爽,晚上回家补完作业欣然搞定它,特意来写篇博文来记录下 (最想吐槽的是这个叫做分治的分类,里面的题目真的需要分治吗...) 先来说下分治法 分治法的设 ...

  9. leetcode 算法刷题(一)

    今天开始刷Leetcode上面的算法题.我会更新我刷题过程中提交的代码(成功和不成功的都有)和比较好的解法 第二题 Add Two Numbers 题目的意思:输入两个链表,这两个链表都是倒序的数字, ...

  10. [刷题]算法竞赛入门经典(第2版) 4-6/UVa508 - Morse Mismatches

    书上具体所有题目:http://pan.baidu.com/s/1hssH0KO 代码:(Accepted,10 ms) //UVa508 - Morse Mismatches #include< ...

随机推荐

  1. flask入门补充

    在上篇文章提到了json的编码问题.那么Flask是国外开发的框架,没有考虑到中文编码,那么我们就需要自己配置 那么在访问页面的时候会有 get 请求和post  请求.在下边我也会提到.以及没有接触 ...

  2. Java编辑PPT的折线图,与内嵌Excel联动

    /** * 折线图的数据写入方法 * @param slide ppt图表 * @param index 折线图的下标 * @param data 需要填充的数据 * @param titles 内嵌 ...

  3. Unity3D — — UGUI之RectTransform

    Mask.GetComponent<RectTransform>().anchoredPosition(子物体) = hotKey_image.rectTransform.anchored ...

  4. SQL知识点脑图(一张图总结SQL)

    sql语言的分类DDL:create drop alter DML:insert delete update DCL:rollback grant revoke commit 概要,主外键,视图,索引 ...

  5. 程序设计 之 C#实现《拼图游戏》 (上)代码篇

    原理详解请参考博客中 拼图游戏(下)原理篇 http://www.cnblogs.com/labixiaohei/p/6713761.html 功能描述: 1.用户自定义上传图片 2.游戏难度选择:简 ...

  6. DB2分页查询简单示例

    select * from ( select a.* ,rownumber() over(order by create_time desc) as rowid from ( select * fro ...

  7. “Hello World!”团队第六周的第三次会议

    今天是我们团队“Hello World!”团队第六周召开的第三次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.代码 一 ...

  8. 记事本APP之Alpha报告

    项目名称 记事本APP 项目版本 Alpha版本 负责人 北京航空航天大学计算机学院 Echo软件团队 联系方式 http://www.cnblogs.com/echo-buaa/ 要求发布日期 20 ...

  9. 私人助手(Alpha)版使用说明

    私人助手使用说明 私人助手这款软件是通过添加事件提醒,提醒你在合适的时间做该做的事,可以选择有多种提醒模式. 目前实现了对事件的添加和提醒功能,软件现在的情况如下: 1.添加事件 2.删除事件 3.事 ...

  10. 团队C++作业1

    我的分工 在本次作业中,我负责的是建筑类的完成还有调试运行. 建筑类的完成: 首先我认为建筑类的完成中,建筑类中应该有三个成员,水晶,防御塔,泉水. 水晶在这个里头是要被保护的对象,它的功能有回血还有 ...